Type-Checking
Announcements

- Programming Project 2 due **tonight** at 11:59PM.
 - Office hours from 1:00PM – 3:00PM in Gates 160.
- Programming Project 3 out.
 - Scope checkpoint due **Saturday, July 23 at 11:59PM**.
 - This is a **hard deadline**, no late days allowed.
 - Final submission due **Wednesday, July 27 at 11:59PM**.
 - **Start early**; this assignment is significantly larger than the previous two assignments.
More Announcements

- Programming Assignment 1 graded and returned on paperless.stanford.edu.
 - Mean: 52.9 / 60
 - Stdev: 8
- Written Assignment 1 graded. Hard copies returned after class, electronic copies will be emailed later today.
 - Mean: 20.2 / 24
 - Stdev: 3
- Let us know ASAP if you haven't heard back from us by tomorrow morning.
Where We Are

- Source Code
- Lexical Analysis
- Syntax Analysis
- Semantic Analysis
- IR Generation
- IR Optimization
- Code Generation
- Optimization
- Machine Code
Review from Last Time

class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;

 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}
Review from Last Time

class MyClass implements MyInterface
 string myInteger;

void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }

 }

Wrong type

Variable not declared

Can't multiply strings

Can't redefine functions

Can't add void

No main function
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }

}
class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}

Wrong type
Can't multiply strings
Can't add void
No main function
Review from Last Time

class MyClass implements MyInterface {
 string myInteger;

 void doSomething() {
 int[] x;
 x = new string;
 x[5] = myInteger * y;
 }

 void doSomething() {
 }

 int fibonacci(int n) {
 return doSomething() + fibonacci(n - 1);
 }
}

Can't multiply strings
Wrong type
Can't add void
What Remains to Check?

- Type errors.
- Today:
 - What are types?
 - What is type-checking?
 - A type system for Decaf.
What is a Type?

• This is the subject of some debate.
• To quote Alex Aiken:
 • “The notion varies from language to language.
 • The consensus:
 – A set of values.
 – A set of operations on those values”
• **Type errors** arise when operations are performed on values that do not support that operation.
Types of Type-Checking

- **Static type checking.**
 - Analyze the program during compile-time to prove the absence of type errors.
 - Never let bad things happen at runtime.

- **Dynamic type checking.**
 - Check operations at runtime before performing them.
 - More precise than static type checking, but usually less efficient.
 - (Why?)

- **No type checking.**
 - Throw caution to the wind!
Type Systems

• The rules governing permissible operations on types forms a type system.

• Strong type systems are systems that never allow for a type error.
 • Java, Python, JavaScript, LISP, Haskell, etc.

• Weak type systems can allow type errors at runtime.
 • C, C++
Type Wars

- **Endless** debate about what the “right” system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
Type Wars

- **Endless** debate about what the “right” system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
- *I'm staying out of this!*
Our Focus

- Decaf is typed \textit{statically} and \textit{weakly}:
 - Type-checking occurs at compile-time.
 - Runtime errors like dereferencing \texttt{null} or an invalid object are disallowed.
- Decaf uses \texttt{class-based} inheritance.
- Decaf distinguishes primitive types and classes.
Typing in Decaf
Static Typing in Decaf

- Static type checking in Decaf consists of two separate processes:
 - Inferring the type of each expression from the types of its components.
 - Confirming that the types of expressions in certain contexts matches what is expected.

- Logically two steps, but you will probably combine into one pass.
while (numBitsSet(x + 5) <= 10) {
 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }
}
An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }

}
An Example

```java
while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* ... */
    }

    while (5 == null) {
        /* ... */
    }
}
```
An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* ... */
 }

 while (5 == null) {
 /* ... */
 }

}
An Example

while (numBitsSet(x + 5) <= 10) {

 if (1.0 + 4.0) {
 /* … */
 }

 while (5 == null) {
 /* … */
 }

}
An Example

while (numBitsSet(x + 5) <= 10) {
 if (1.0 + 4.0) {
 /* ... */
 }
 while (5 == null) {
 /* ... */
 }
}
Inferring Expression Types

• How do we determine the type of an expression?
• Think of process as logical inference.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.

![Diagram of an expression with two IntConstant nodes](image)
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

![Expression Diagram]

```plaintext
int +
  |   |
  |___|
137   42
```

IntConstant 137 + **IntConstant** 42
Inferring Expression Types

• How do we determine the type of an expression?
• Think of process as **logical inference**.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.
Inferring Expression Types

• How do we determine the type of an expression?
• Think of process as logical inference.
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as **logical inference**.
Inferring Expression Types

• How do we determine the type of an expression?

• Think of process as *logical inference*.

```
bool x Identifier = bool y Identifier = bool true BoolConstant
```
Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.
Sample Inference Rules

- “If x is an identifier that refers to an object of type t, the expression x has type t."
- “If e is an integer constant, e has type int.”
- “If the operands e_1 and e_2 of $e_1 + e_2$ are known to have types int and int, then $e_1 + e_2$ has type int.”
Type Checking as Proofs

• We can think of syntax analysis as proving claims about the types of expressions.

• We begin with a set of axioms, then apply our inference rules to determine the types of expressions.

• Many type systems can be thought of as proof systems.
Formalizing our Notation

- We will encode our axioms and inference rules using this syntax:

 Preconditions
 linik

- This is read “if **preconditions** are true, we can infer **postconditions**.”
Examples of Formal Notation

\[A \rightarrow Bv \text{ is a production.} \]
\[t \in \text{FIRST}(B) \]
\[\underline{t \in \text{FIRST}(A)} \]

\[A \rightarrow \varepsilon \text{ is a production.} \]
\[\underline{\varepsilon \in \text{FIRST}(A)} \]

\[A \rightarrow B_1B_2\ldots B_n tv \text{ is a production.} \]
\[\varepsilon \in \text{FIRST}(B_i) \text{ for } 1 \leq i \leq n \]
\[\underline{t \in \text{FIRST}(A)} \]

\[A \rightarrow B_1 \ldots B_n \text{ is a production.} \]
\[\varepsilon \in \text{FIRST}(B_i) \text{ for } 1 \leq i \leq n \]
\[\underline{\varepsilon \in \text{FIRST}(A)} \]
Formal Notation for Type Systems

• We write

\[\vdash e : T \]

if the expression \(e \) has type \(T \).

• The symbol \(\vdash \) means “we can infer...”
Our Starting Axioms
Our Starting Axioms

⊢ true : bool

⊢ false : bool
Some Simple Inference Rules
Some Simple Inference Rules

\[i \text{ is an integer constant} \quad \vdash i : \text{int} \]

\[s \text{ is a string constant} \quad \vdash s : \text{string} \]

\[d \text{ is a double constant} \quad \vdash d : \text{double} \]
More Complex Inference Rules
More Complex Inference Rules

\[
\begin{align*}
\therefore e_1 &: \text{int} \\
\therefore e_2 &: \text{int} \\
\hline
\therefore e_1 + e_2 &: \text{int}
\end{align*}
\]

\[
\begin{align*}
\therefore e_1 &: \text{double} \\
\therefore e_2 &: \text{double} \\
\hline
\therefore e_1 + e_2 &: \text{double}
\end{align*}
\]
More Complex Inference Rules

If we can show that e_1 and e_2 have type int...

\[\vdash e_1 : \text{int} \]
\[\vdash e_2 : \text{int} \]

\[\vdash e_1 + e_2 : \text{int} \]

\[\vdash e_1 : \text{double} \]
\[\vdash e_2 : \text{double} \]

\[\vdash e_1 + e_2 : \text{double} \]
More Complex Inference Rules

If we can show that e_1 and e_2 have type int...

\[\vdash e_1 : int \]
\[\vdash e_2 : int \]

\[\vdash e_1 + e_2 : int \]

... then we can show that $e_1 + e_2$ has type int as well.

\[\vdash e_1 : double \]
\[\vdash e_2 : double \]

\[\vdash e_1 + e_2 : double \]
Even More Complex Inference Rules
Even More Complex Inference Rules

\[\vdash e_1 : T \]
\[\vdash e_2 : T \]
\[T \text{ is a primitive type} \]
\[\vdash e_1 = e_2 : \text{bool} \]

\[\vdash e_1 : T \]
\[\vdash e_2 : T \]
\[T \text{ is a primitive type} \]
\[\vdash e_1 \neq e_2 : \text{bool} \]
Why Specify Types this Way?

- Gives a **rigorous definition of types** independent of any particular implementation.
 - No need to say “you should have the same type rules as my reference compiler.”
- Gives **maximum flexibility in implementation**.
 - Can implement type-checking however you want, as long as you obey the rules.
- Allows **formal verification of program properties**.
 - Can do inductive proofs on the structure of the program.
- **This is what's used in the literature**.
 - Good practice if you want to study types.
A Problem
A Problem

\[x \text{ is an identifier.} \]

\[\vdash x : ?? \]
A Problem

x is an identifier.

$\vdash x : ??$

How do we know the type of x if we don’t know what it refers to?
An Incorrect Solution
An Incorrect Solution

\[\begin{align*}
\text{x is an identifier.} \\
\text{x is in scope with type T.} \\
\hline
\neg \quad \text{x : T}
\end{align*} \]
An Incorrect Solution

x is an identifier.
x is in scope with type T.

\[\vdash x : T \]

```c
int MyFunction(int x) {
    double x;
    if (x == 1.5) {
        /* ... */
    }
}
```
An Incorrect Solution

x is an identifier.

x is in scope with type T.

\[\vdash x : T \]

```c
int MyFunction(int x) {
{
  double x;
}

  if (x == 1.5) {
    /* ... */
  }
}
```
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type T.} \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;
}
if (x == 1.5) {
    /* ... */
}
}
```
An Incorrect Solution

x is an identifier.
x is in scope with type T.

\[\vdash x : T \]

```
int MyFunction(int x) {
{
    double x;
}

if (x == 1.5) {
    /* ... */
}
```
An Incorrect Solution

\[\text{x is an identifier.} \]
\[\text{x is in scope with type T.} \]

\[\vdash x : T \]

```c
int MyFunction(int x) {
    {  
        double x;
    }
    if (x == 1.5) {
        /* ... */
    }
}
```
An Incorrect Solution

\textit{x} is an identifier.
x is in scope with type T.
\[\vdash x : T \]

\begin{verbatim}
int MyFunction(int x) {
 {
 double x;
 }
 if (x == 1.5) {
 /* ... */
 }
}
\end{verbatim}
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
    {
        double x;
    }

    if (x == 1.5) {
        /* ... */
    }
}
```

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vdash x : \text{double})</td>
</tr>
<tr>
<td>(\vdash x : \text{int})</td>
</tr>
</tbody>
</table>
An Incorrect Solution

\[\vdash x : T \]

\[\vdash d : \text{double} \]

\[
\text{int MyFunction(int x) }
\{
 \{
 \text{double } x;
 \}
 \text{if (x == 1.5) } \{
 \text{/* ... */}
 \}
\}
\]

Facts:

- \(\vdash x : \text{double} \)
- \(\vdash x : \text{int} \)

\(x \) is an identifier.
\(x \) is in scope with type \(T \).
\(d \) is a double constant.
An Incorrect Solution

\[\begin{align*} x \text{ is an identifier.} \\
\text{x is in scope with type T.} \\
\end{align*} \]

\[\vdash x : T \]

\[\begin{align*} \text{int MyFunction(int x) {} } \\
\text{{} } \\
\text{{} } \\
\text{{} } \\
\text{if (x == 1.5) {} } \\
\text{{} } \\
\text{{} } \\
\text{}} \]

\[\vdash d : \text{double} \]

\[\begin{align*} d \text{ is a double constant} \\
\end{align*} \]

Facts

| \[\vdash x : \text{double} \] |
| \[\vdash x : \text{int} \] |
| \[\vdash 1.5 : \text{double} \] |
An Incorrect Solution

\[x \text{ is an identifier.} \]
\[x \text{ is in scope with type } T. \]
\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;
}

if (x == 1.5) {
    /* ... */
}
```
An Incorrect Solution

x is an identifier.
x is in scope with type T.

\[\vdash x : T \]

```c
int MyFunction(int x) {
{
    double x;
}
    if (x == 1.5) {
        /* ... */
    }
}
```

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\vdash x : double]</td>
</tr>
<tr>
<td>[\vdash x : int]</td>
</tr>
<tr>
<td>[\vdash 1.5 : double]</td>
</tr>
</tbody>
</table>
An Incorrect Solution

\[
\begin{align*}
\text{x is an identifier.} \\
\text{x is in scope with type T.} \\
\text{\(\vdash x : T \) }
\end{align*}
\]

\[
\begin{align*}
\text{int MyFunction(int x) {} } \\
\quad \{ \\
\quad \quad \text{double x;} \\
\quad \} \\
\quad \text{if (x \texttt{ == 1.5}) { } } \\
\quad \quad \text{/* ... */} \\
\quad \}
\end{align*}
\]

\[
\begin{align*}
\text{\(\vdash \texttt{x : double} \)} \\
\text{\(\vdash \texttt{x : int} \)} \\
\text{T is a primitive type} \\
\text{\(\vdash \texttt{e}_1 \texttt{ == e}_2 : \texttt{bool} \)}
\end{align*}
\]

Facts

\[
\begin{array}{|c|}
\hline
\text{\(\vdash x : \texttt{double} \)} \\
\text{\(\vdash x : \texttt{int} \)} \\
\text{\(\vdash 1.5 : \texttt{double} \)} \\
\hline
\end{array}
\]
An Incorrect Solution

```
int MyFunction(int x) {
    double x;
    if (x == 1.5) {
        /* ... */
    }
}
```

Facts

- \(\vdash x : T \)
- \(\vdash e_1 : T \)
- \(\vdash e_2 : T \)
- \(T \) is a primitive type
- \(\vdash e_1 == e_2 : \text{bool} \)

Inference

- \(x \) is an identifier.
- \(x \) is in scope with type \(T \).

\[
\vdash x : T
\]

Type Inference

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vdash x : \text{double})</td>
</tr>
<tr>
<td>(\vdash x : \text{int})</td>
</tr>
<tr>
<td>(\vdash 1.5 : \text{double})</td>
</tr>
<tr>
<td>(\vdash x == 1.5 : \text{bool})</td>
</tr>
</tbody>
</table>
An Incorrect Solution

x is an identifier.
x is in scope with type T.

\[
\vdash x : T
\]

```c
int MyFunction(int x) {
    double x;
    
    if (x == 1.5) {
        /* ... */
    }
}
```

T is a primitive type

\[
\vdash e_1 == e_2 : bool
\]

Facts

- \(\vdash x : double \)
- \(\vdash x : int \)
- \(\vdash 1.5 : double \)
- \(\vdash x == 1.5 : bool \)
An Incorrect Solution

```
int MyFunction(int x) {
    double x;
    if (x == 1.5) {
        /* ... */
    }
}
```

Facts

- $x : T$
- $x : T$
- $e_1 : T$
- $e_2 : T$
- T is a primitive type

Problem?

- $e_1 == e_2 : bool$
- $x == 1.5 : bool$
Strengthening our Inference Rules

- The facts we're proving have no context.
- We need to strengthen our inference rules to remember under what circumstances the results are valid.
Adding Scope

• We write

\[S \vdash e : T \]

if \textbf{in scope} \(S \), the expression \(e \) has type \(T \).

• Types are now proven relative to the scope they are in.
Old Rules Revisited

\[S \vdash \text{true} : \text{bool} \]

\(i \) is an integer constant

\[S \vdash i : \text{int} \]

\[S \vdash \text{false} : \text{bool} \]

\(s \) is a string constant

\[S \vdash s : \text{string} \]

\(d \) is a double constant

\[S \vdash d : \text{double} \]

\[S \vdash e_1 : \text{double} \]
\[S \vdash e_2 : \text{double} \]
\[S \vdash e_1 + e_2 : \text{double} \]

\[S \vdash e_1 : \text{int} \]
\[S \vdash e_2 : \text{int} \]
\[S \vdash e_1 + e_2 : \text{int} \]
A Correct Rule

\[S \vdash x : T \]

\(x \) is an identifier.
\(x \) is a variable in scope \(S \) with type \(T \).
A Correct Rule

\[\begin{align*}
\text{x is an identifier.} \\
\text{x is a variable in scope S with type T.} \\
\text{\hspace{1cm}} \\
\hspace{1cm} \text{\underline{S \vdash x : T}} \\
\end{align*} \]
Rules for Functions

\[S \vdash f(e_1, ..., e_n) : ?? \]
Rules for Functions

f is an identifier.

\[S \vdash f(e_1, \ldots, e_n) : ?? \]
Rules for Functions

\[S \vdash f(e_1, ..., e_n) : ?? \]

- \(f \) is an identifier.
- \(f \) is a non-member function in scope \(S \).

\[S \vdash f(e_1, ..., e_n) : ?? \]
Rules for Functions

\[f \text{ is an identifier.} \]
\[f \text{ is a non-member function in scope } S. \]
\[f \text{ has type } (T_1, \ldots, T_n) \rightarrow U \]

\[S \vdash f(e_1, \ldots, e_n) : ?? \]
Rules for Functions

\[S \vdash f(e_1, \ldots, e_n) : \text{??} \]

- \(f \) is an identifier.
- \(f \) is a non-member function in scope \(S \).
- \(f \) has type \((T_1, \ldots, T_n) \rightarrow U\)
- \(S \vdash e_i : T_i \) for \(1 \leq i \leq n \)
- \[S \vdash f(e_1, \ldots, e_n) : \text{??} \]
Rules for Functions

\[f \text{ is an identifier.} \]
\[f \text{ is a non-member function in scope } S. \]
\[f \text{ has type } (T_1, \ldots, T_n) \rightarrow U \]
\[S \vdash e_i : T_i \text{ for } 1 \leq i \leq n \]
\[\underline{S \vdash f(e_1, \ldots, e_n) : U} \]
Rules for Functions

$S \vdash f(e_1, ..., e_n)$:

- f is an identifier.
- f is a non-member function in scope S.
- f has type $(T_1, ..., T_n) \rightarrow U$

\[S \vdash e_i : T_i \text{ for } 1 \leq i \leq n \]

\[S \vdash f(e_1, ..., e_n) : U \]

Read rules like this
Rules for Arrays

\[S \vdash e_1 : T[[]] \]
\[S \vdash e_2 : \text{int} \]

\[\frac{S \vdash e_2 : \text{int}}{S \vdash e_1[e_2] : T} \]
Rule for Assignment

\[
S \leftarrow e_1 : T \\
S \leftarrow e_2 : T \\
\hline
S \leftarrow e_1 = e_2 : T
\]
Rule for Assignment

\[
S \leftarrow e_1 : T \\
S \leftarrow e_2 : T \\
\]
\[
\underline{S \leftarrow e_1 = e_2 : T}
\]

Why isn't this rule a problem for this statement?

\[
5 = x ;
\]
Rule for Assignment

\[S \vdash e_1 : T \]
\[S \vdash e_2 : T \]
\[\begin{array}{c}
S \vdash e_1 = e_2 : T
\end{array} \]

If Derived extends Base, will this rule work for this code?

Base myBase;
Derived myDerived;

myBase = myDerived;
Typing with Classes

• How do we factor inheritance into our inference rules?
• We need to consider the shape of class hierarchies.
Single Inheritance

Instructor

Professor
 - AlexAiken

Lecturer
 - Keith

TA
 - Hrysoula
 - Riddhi

Animal

Man
 - Bear
 - Pig
Multiple Inheritance

- Instructor
 - Professor
 - AlexAiken
 - Lecturer
 - Keith
 - TA
 - Hrysoula
 - Riddhi

- Animal
 - Man
 - Bear
 - Pig
 - ManBearPig
Properties of Inheritance Structures

- Any class is convertible to itself. (**Reflexivity**)
- If A is convertible to B and B is convertible to C, then A is convertible to C. (**Transitivity**)
- If A is convertible to B and B is convertible to A, then A and B are the same type. (**Antisymmetry**)
- This defines a **partial order** over types.
Types and Partial Orders

• We say that $A \leq B$ if A is convertible to B.
• We have that
 • $A \leq A$
 • $A \leq B$ and $B \leq C$ implies $A \leq C$
 • $A \leq B$ and $B \leq A$ implies $A = B$
Updated Rule for Assignment

\[S \vdash e_1 = e_2 : ?? \]
Updated Rule for Assignment

\[\begin{align*}
S &\leftarrow e_1 : T_1 \\
S &\leftarrow e_2 : T_2 \\
\hline \\
S &\leftarrow e_1 = e_2 : ??
\end{align*} \]
Updated Rule for Assignment

\[S \leftarrow e_1 : T_1 \]
\[S \leftarrow e_2 : T_2 \]
\[T_2 \leq T_1 \]

\[\frac{S \leftarrow e_1 = e_2 : ??}{S \leftarrow e_1 = e_2} \]
Updated Rule for Assignment

\[S \leftarrow e_1 : T_1 \]
\[S \leftarrow e_2 : T_2 \]
\[T_2 \leq T_1 \]

\[\underline{S \leftarrow e_1 = e_2 : T_1} \]
Updated Rule for Assignment

\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_2 \leq T_1 \]
\[S \vdash e_1 = e_2 : T_1 \]

Can we do better than this?
Updated Rule for Assignment

\[
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_2 \leq T_1
\]

\[
S \vdash e_1 = e_2 : T_2
\]
Updated Rule for Assignment

\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_2 \leq T_1 \]

\[S \vdash e_1 = e_2 : T_2 \]

Not required in your semantic analyzer, but easy extra credit!
Updated Rule for Comparisons
Updated Rule for Comparisons

\[
\begin{align*}
S \vdash e_1 : T \\
S \vdash e_2 : T \\
T \text{ is a primitive type} \\
\hline
S \vdash e_1 == e_2 : \text{bool}
\end{align*}
\]
Updated Rule for Comparisons

\[
S \vdash e_1 : T \\
S \vdash e_2 : T \\
T \text{ is a primitive type}
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]

\[
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \text{ and } T_2 \text{ are of class type.} \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]
Updated Rule for Comparisons

Can we unify these rules?

\[S ⊢ e_1 : T \]
\[S ⊢ e_2 : T \]
T is a primitive type

\[S ⊢ e_1 == e_2 : \text{bool} \]

\[S ⊢ e_1 : T_1 \]
\[S ⊢ e_2 : T_2 \]
T_1 and T_2 are of class type.
\[T_1 ≤ T_2 \text{ or } T_2 ≤ T_1 \]

\[S ⊢ e_1 == e_2 : \text{bool} \]
The Shape of Types

- Engine
 - CarEngine
 - DieselEngine
- DieselCarEngine
- bool
- string
- int
- double
The Shape of Types

- Engine
 - CarEngine
 - DieselEngine
 - DieselCarEngine
- bool
- string
- int
- double

Array Types
Extending Convertibility

• If A is a primitive or array type, A is only convertible to itself.

• More formally, if A and B are types and A is a primitive or array type:
 • A ≤ B implies A = B
 • B ≤ A implies A = B
Updated Rule for Comparisons

\[
\begin{align*}
S &\vdash e_1 : T \\
S &\vdash e_2 : T \\
\text{T is a primitive type} &\\
\hline
S &\vdash e_1 == e_2 : \text{bool}
\end{align*}
\]

\[
\begin{align*}
S &\vdash e_1 : T_1 \\
S &\vdash e_2 : T_2 \\
\text{T}_1 \text{ and } T_2 \text{ are of class type. } &\\
\hline
T_1 &\leq T_2 \text{ or } T_2 \leq T_1 \\
S &\vdash e_1 == e_2 : \text{bool}
\end{align*}
\]
Updated Rule for Comparisons

\[
\begin{align*}
S &\vdash e_1 : T \\
S &\vdash e_2 : T \\
&\text{T is a primitive type}
\end{align*}
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]

\[
\begin{align*}
S &\vdash e_1 : T_1 \\
S &\vdash e_2 : T_2 \\
&\text{T}_1 \text{ and T}_2 \text{ are of class type.}
\end{align*}
\]

\[
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash e_1 == e_2 : \text{bool}
\]
Updated Rule for Comparisons

\[
\begin{align*}
S \vdash e_1 &: T \\
S \vdash e_2 &: T \\
T \text{ is a primitive type}
\end{align*}
\]

\[
S \vdash e_1 = e_2 : \text{bool}
\]

\[
\begin{align*}
S \vdash e_1 &: T_1 \\
S \vdash e_2 &: T_2 \\
T_1 \text{ and } T_2 \text{ are of class type.}
\end{align*}
\]

\[
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash e_1 = e_2 : \text{bool}
\]
Updated Rule for Function Calls

\[f \text{ is an identifier.} \]
\[f \text{ is a non-member function in scope } S. \]
\[f \text{ has type } (T_1, \ldots, T_n) \rightarrow U \]
\[S \leftarrow e_i : R_i \text{ for } 1 \leq i \leq n \]
\[R_i \leq T_i \text{ for } 1 \leq i \leq n \]

\[S \leftarrow f(e_1, \ldots, e_n) : U \]
A Tricky Case

⊢ null : ??
Back to the Drawing Board

- Engine
 - CarEngine
 - DieselEngine
 - DieselCarEngine

- bool
- string
- int
- double

Array Types
Back to the Drawing Board

Engine

CarEngine DieselEngine bool string int double

DieselCarEngine

null Type

Array Types
Handling **null**

- Define a new type corresponding to the type of the literal **null**; call it “**null type.**”
- Define **null type** $\leq A$ for any class type A.
- The **null** type is not accessible to programmers; it's only used internally inside the compiler.
- Many programming languages have types like these.
A Tricky Case

\[S \vdash \text{null} : ?? \]
A Tricky Case

\[S \vdash \text{null} : \text{null type} \]
A Tricky Case

\[S \leftarrow \text{null} : \text{null type} \]
Object-Oriented Considerations

\[S \vdash \text{this} : T \]

T is a class type.

\[S \vdash \text{new } T : T \]

S is in scope of class T.

\[S \vdash \text{e} : \text{int} \]

\[S \vdash \text{NewArray(e, T)} : T[\text{]} \]
Object-Oriented Considerations

\[
S \vdash this : T
\]

- \(T \) is a class type.
 \[
 S \vdash new T : T
 \]
 \[
 S \vdash e : int
 \]
 \[
 S \vdash NewArray(e, T) : T[
 \]

Why don't we need to check if \(T \) is \texttt{void}?
What's Left?

- We're missing a few language constructs:
 - Member functions.
 - Field accesses.
 - Miscellaneous operators.
- Good practice to fill these in on your own.
Typing is Nuanced

• The **ternary conditional operator** `? :` evaluates an expression, then produces one of two values.

• Works for primitive types:
 • `int x = random()? 137 : 42;`

• Works with inheritance:
 • `Base b = isB? new Base : new Derived;`

• What might the typing rules look like?
A Proposed Rule

\[S \vdash \text{cond} \ ? \ e_1 : e_2 : ?? \]
A Proposed Rule

\[S \vdash \text{cond} : \text{bool} \]

\[S \vdash \text{cond} \ ? \ e_1 : e_2 : ?? \]
A Proposed Rule

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
\]

\[
S \vdash \text{cond} \, ? \, e_1 : e_2 : ??
\]
A Proposed Rule

\[
S \vdash cond : \texttt{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash cond \ ? \ e_1 \ : \ e_2 \ : \ ??
\]
A Proposed Rule

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1 \\
\hline \\
S \vdash \text{cond} ? e_1 : e_2 : \max(T_1, T_2)
\]
A Proposed Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T_1 \leq T_2 \text{ or } T_2 \leq T_1 \]

\[S \vdash \text{cond} \ ? e_1 \ : e_2 : \text{max}(T_1, T_2) \]
A Proposed Rule

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \vdash \text{cond} \ ? \ e_1 \ : \ e_2 : \max(T_1, T_2)
\]

Is this really what we want?
A Small Problem

\[
S \vdash \text{cond} : \text{bool} \\
S \vdash e_1 : T_1 \\
S \vdash e_2 : T_2 \\
T_1 \leq T_2 \text{ or } T_2 \leq T_1 \\
S \vdash \text{cond} \ ? \ e_1 : e_2 : \text{max}(T_1, T_2)
\]
A Small Problem

\[
S \leftarrow \text{cond} : \text{bool}
\]

\[
S \leftarrow e_1 : T_1
\]

\[
S \leftarrow e_2 : T_2
\]

\[
T_1 \leq T_2 \text{ or } T_2 \leq T_1
\]

\[
S \leftarrow \text{cond} ? e_1 : e_2 : \text{max}(T_1, T_2)
\]

Base = random()?

 new Derived1 : new Derived2;
A Small Problem

$S \vdash \text{cond} : \text{bool}$
$S \vdash e_1 : T_1$
$S \vdash e_2 : T_2$

$T_1 \leq T_2 \text{ or } T_2 \leq T_1$

$S \vdash \text{cond} \ ? e_1 : e_2 : \text{max}(T_1, T_2)$

Base = random()?
new Derived1 : new Derived2;
Least Upper Bounds

• An upper bound of two types A and B is a type C such that $A \leq C$ and $B \leq C$.

• The least upper bound of two types A and B is a type C such that:
 • C is an upper bound of A and B.
 • If C' is an upper bound of A and B, $C \leq C'$.

• When the least upper bound of A and B exists, we denote it $A \cup B$.
 • (When might it not exist?)
A Better Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]
\[T = T_1 \cup T_2 \]
\[S \vdash \text{cond} ? e_1 : e_2 : T \]

Base = random()?

 new Derived1 : new Derived2;
… that still has problems

Base1 = random()?
 new Derived1 : new Derived2;

S ⊢ \text{cond} : \text{bool}
S ⊢ e_1 : T_1
S ⊢ e_2 : T_2
T = T_1 \cup T_2

\[S ⊢ \text{cond} ? e_1 : e_2 : T \]
... that still has problems

Base1 = random()?
 new Derived1 : new Derived2;

$S \leftarrow \text{cond} : \text{bool}$
$S \leftarrow e_1 : T_1$
$S \leftarrow e_2 : T_2$
$T = T_1 \cup T_2$

$S \leftarrow \text{cond} ? e_1 : e_2 : T$
Multiple Inheritance is Messy

- Type hierarchy is no longer a tree.
- Two classes might not have a least upper bound.
- Occurs in Java due to interfaces.
- Not a problem in Decaf; there is no ternary conditional operator.
- How to fix?
Minimal Upper Bounds

- An **upper bound** of two types A and B is a type C such that $A \leq C$ and $B \leq C$.

- A **minimal upper bound** of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - If C' is an upper bound of C, then it is not true that $C' < C$.

- Minimal upper bounds are not necessarily unique.

- A least upper bound must be a minimal upper bound, but not the other way around.
A Correct Rule

\[S \leftarrow \text{cond} : \text{bool} \]
\[S \leftarrow e_1 : T_1 \]
\[S \leftarrow e_2 : T_2 \]

T is a minimal upper bound of T_1 and T_2

\[S \leftarrow \text{cond} \ ? \ e_1 : e_2 : T \]

Base1 = random()?
new Derived1 ; new Derived2;
A Correct Rule

\[S \vdash \text{cond} : \text{bool} \]
\[S \vdash e_1 : T_1 \]
\[S \vdash e_2 : T_2 \]

T is a minimal upper bound of \(T_1\) and \(T_2\).

\[S \vdash \text{cond} ? e_1 : e_2 : T \]

Can prove both that expression has type \text{Base1} and that expression has type \text{Base2}.

\[
\text{Base1} = \text{random()}? \quad \text{new Derived1} : \text{new Derived2};
\]
So What?

- Type-checking can be tricky.
- Strongly influenced by the choice of operators in the language.
- Strongly influenced by the legal type conversions in a language.
- In C++, the previous example doesn't compile.
- In Java, the previous example does compile, but the language spec is enormously complicated.
 - See §15.12.2.7 of the Java Language Specification.