
Chapter 7: The Preprocessor
_________________________________________________________________________________________________________

Consider the prototypical C++ “Hello, World!” program, which is reprinted here:

    #include <iostream>
    using namespace std;

    int main()
    {
        cout << "Hello, world!" << endl;
        return 0;
    }

When you first started off your tour of C++, this code was almost certainly a mystery.  But as you've seen more 
and more C++ in action, this program has probably begun to look less and less mysterious.  The declaration of  
the main function is not at all complicated compared to other functions that you've written, and the code to print  
text to the console is nothing compared to some of the more advanced streams hackery we've seen over the last 
few chapters.  But two lines of this code still remain an enigma – using namespace std, which we touched 
on briefly in an earlier chapter, and #include <iostream>.  It is this line of code, along with related struc-
tures, which are the focus of this chapter.

One of the most exciting parts of writing a C++ program is pressing the “compile” button and watching as your 
code transforms from static text into dynamic software.  But what exactly goes on behind the scenes that makes 
this transition possible?  There are several steps involved in compilation, among the first of which is  prepro-
cessing, where a special program called the preprocessor reads in commands called directives and modifies your 
code before handing it off to the compiler for further analysis.  You have already seen one of the more common 
preprocessor directives,  #include, which imports additional code into your program.  However, the prepro-
cessor has far more functionality and is capable of working absolute wonders on your code.  But while the pre -
processor is powerful, it is difficult to use correctly and can lead to subtle and complex bugs.  This chapter intro-
duces the preprocessor, highlights potential sources of error, and concludes with advanced preprocessor tech-
niques.

A word of warning: the preprocessor was developed in the early days of the C programming language, before  
many of the more modern constructs of C and C++ had been developed.  Since then, both C and C++ have intro -
duced new language features that have obsoleted or superseded much of the preprocessor's functionality and  
consequently you should attempt to minimize your use of the preprocessor.  This is not to say, of course, that you  
should never use the preprocessor – there are times when it's an excellent tool for the job, as you'll see later in  
the chapter – but do consider other options before adding a hastily-crafted directive.

#include Explained

So far, every program you've encountered has begun with several lines using the #include directive; for ex-
ample, #include <iostream> or #include "mail.h".  Intuitively, these directives tell the preprocessor to 
import library code into your programs.  Literally, #include instructs the preprocessor to locate the specified 
file and to insert its contents in place of the directive itself.  Thus, when you write #include <iostream> at 
the top of your C++ programs, it is as if you had literally copied and pasted the contents of the file iostream 
into your source file.  These header files usually contain prototypes or implementations of the functions and  
classes they export, which is why the directive is necessary to access other libraries.

You may have noticed that when  #include-ing custom libraries, you've surrounded the name of the file in 
double quotes (e.g.  "nstream.h"), but when referencing C++ standard library components, you surround the 
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header in angle brackets (e.g. <iostream>).  These two different forms of #include instruct the preprocessor 
where to look for the specified file.  If a filename is surrounded in angle brackets, the preprocessor searches for  
it a compiler-specific directory containing C++ standard library files.  When filenames are in quotes, the prepro-
cessor will look in the current directory.

#include is a preprocessor directive, not a C++ statement, and is subject to a different set of syntax restrictions  
than normal C++ code.  For example, to use #include (or any preprocessor directive, for that matter), the dir-
ective must be the first non-whitespace text on its line.  For example, the following is illegal:

    cout << #include <iostream> << endl; // Error: #include must start the line.

Second, because #include is a preprocessor directive, not a C++ statement, it must not end with a semicolon.  
That is,  #include <iostream>; will probably cause a compiler error or warning.  Finally, the entire #in-
clude directive must appear on a single line, so the following code will not compile:

    #include
    <iostream> // Error: Multi-line preprocessor directives are illegal.

The #define Directive

One of the most commonly used (and abused) preprocessor directives is #define, the equivalent of a “search 
and replace” operation on your C++ source files.  While #include splices new text into an existing C++ source 
file, #define replaces certain text strings in your C++ file with other values.  The syntax for #define is 

    #define phrase replacement

After encountering a #define directive, whenever the preprocessor find phrase in your source code, it will re-
place it with replacement.  For example, consider the following program:

    #define MY_CONSTANT 137

    int main()
    {
        int x = MY_CONSTANT - 3;
        return 0;
    }

The first line of this program tells the preprocessor to replace all instances of  MY_CONSTANT with the phrase 
137.  Consequently, when the preprocessor encounters the line

    int x = MY_CONSTANT - 3;

It will transform it to read

    int x = 137 - 3;

So x will take the value 134.

Because  #define is a preprocessor directive and not a C++ statement, its syntax can be confusing.  For ex-
ample, #define determines the stop of the phrase portion of the statement and the start of the replacement 
portion by the position of the first whitespace character.  Thus, if you write

    #define TWO WORDS 137
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The preprocessor will interpret this as a directive to replace the phrase TWO with WORDS 137, which is probably 
not what you intended.  The replacement portion of the #define directive consists of all text after phrase 
that precedes the newline character.  Consequently, it is legal to write statements of the form #define phrase 
without defining a replacement.  In that case, when the preprocessor encounters the specified phrase in your  
code, it will replace it with nothingness, effectively removing it.

Note that the preprocessor treats C++ source code as sequences of strings, rather than representations of higher-
level C++ constructs.  For example, the preprocessor treats  int x = 137 as the strings “int,” “x,” “=,” and 
“137” rather than a statement creating a variable x with value 137.*  It may help to think of the preprocessor as a 
scanner that can read strings and recognize characters but which has no understanding whatsoever of their mean-
ings, much in the same way a native English speaker might be able to split Czech text into individual words  
without comprehending the source material.

That the preprocessor works with text strings rather than language concepts is a source of potential problems. 
For example, consider the following #define statements, which define margins on a page:

    #define LEFT_MARGIN 100
    #define RIGHT_MARGIN 100
    #define SCALE .5

    /* Total margin is the sum of the left and right margins, multiplied by some
     * scaling factor.
     */
    #define TOTAL_MARGIN LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE

What happens if we write the following code?

    int x = 2 * TOTAL_MARGIN;

Intuitively, this should set x to twice the value of TOTAL_MARGIN, but unfortunately this is not the case.  Let's 
trace  through  how  the  preprocessor  will  expand  out  this  expression.   First,  the  preprocessor  will  expand 
TOTAL_MARGIN to LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE, as shown here:

    int x = 2 * LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;

Initially, this may seem correct, but look closely at the operator precedence.  C++ interprets this statement as

    int x = (2 * LEFT_MARGIN * SCALE) + RIGHT_MARGIN * SCALE;

Rather the expected

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

And  the  computation  will  be  incorrect.   The  problem is  that  the  preprocessor  treats  the  replacement  for  
TOTAL_MARGIN as a string, not a mathematic expression, and has no concept of operator precedence.  This sort  
of error – where a #defined constant does not interact properly with arithmetic expressions – is a common mis-
take.  Fortunately, we can easily correct this error by adding additional parentheses to our #define.  Let's re-
write the #define statement as

    #define TOTAL_MARGIN (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE)

* Technically speaking, the preprocessor operates on “preprocessor tokens,” which are slightly different from the whitespace-delineated  pieces  of  your  code.   For  example,  the  preprocessor  treats  string  literals  containing  whitespace as a single object rather than as a collection of smaller pieces.
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We've surrounded the replacement phrase with parentheses, meaning that any arithmetic operators applied to the  
expression will treat the replacement string as a single mathematical value.  Now, if we write

    int x = 2 * TOTAL_MARGIN;

It expands out to

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which is the computation we want.  In general, if you #define a constant in terms of an expression applied to 
other #defined constants, make sure to surround the resulting expression in parentheses.

Although this expression is certainly more correct than the previous one, it too has its problems.  What if we re -
define LEFT_MARGIN as shown below?

    #define LEFT_MARGIN 200 – 100

Now, if we write

    int x = 2 * TOTAL_MARGIN

It will expand out to

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which in turn expands to

    int x = 2 * (200 – 100 * .5 + 100 * .5)

Which yields the incorrect result because (200 – 100 * .5 + 100 * .5) is interpreted as

    (200 – (100 * .5) + 100 * .5)

Rather than the expected

    ((200 – 100) * .5 + 100 * .5)

The problem is that the #defined statement itself has an operator precedence error.  As with last time, to fix 
this, we'll add some additional parentheses to the expression to yield

    #define TOTAL_MARGIN ((LEFT_MARGIN) * (SCALE) + (RIGHT_MARGIN) * (SCALE))

This corrects the problem by ensuring that each #defined subexpression is treated as a complete entity when 
used in arithmetic expressions.  When writing a #define expression in terms of other #defines, make sure that 
you take this into account, or chances are that your constant will not have the correct value.

Another potential source of error with #define concerns the use of semicolons.  If you terminate a #define 
statement with a semicolon, the preprocessor will treat the semicolon as part of the replacement phrase, rather 
than as an “end of statement” declaration.  In some cases, this may be what you want, but most of the time it just  
leads to frustrating debugging errors.  For example, consider the following code snippet:

    #define MY_CONSTANT 137; // Oops-- unwanted semicolon!

    int x = MY_CONSTANT * 3;
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During preprocessing, the preprocessor will convert the line int x = MY_CONSTANT * 3 to read

    int x = 137; * 3;

This is not legal C++ code and will cause a compile-time error.  However, because the problem is in the prepro-
cessed code, rather than the original C++ code, it may be difficult to track down the source of the error.  Almost 
all C++ compilers will give you an error about the statement * 3 rather than a malformed #define.

As you can tell, using #define to define constants can lead to subtle and difficult-to-track bugs.  Consequently,  
it's strongly preferred that you define constants using the const keyword.  For example, consider the following 
const declarations:

    const int LEFT_MARGIN = 200 - 100;
    const int RIGHT_MARGIN = 100;
    const int SCALE = .5;
    const int TOTAL_MARGIN = LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;
    int x = 2 * TOTAL_MARGIN;

Even though we've used mathematical expressions inside the const declarations, this code will work as expec-
ted because it is interpreted by the C++ compiler rather than the preprocessor.  Since the compiler understands  
the meaning of the symbols 200 – 100, rather than just the characters themselves, you will not need to worry 
about strange operator precedence bugs.

Compile-time Conditional Expressions

Suppose we make the following header file, myfile.h, which defines a struct called MyStruct:

MyFile.h
struct MyStruct
{
    int x;
    double y;
    char z;
};

What happens when we try to compile the following program?

    #include "myfile.h"
    #include "myfile.h" // #include the same file twice

    int main()
    {
        return 0;
    }

This code looks innocuous, but produces a compile-time error complaining about a redefinition of struct My-
Struct.  The reason is simple – when the preprocessor encounters each #include statement, it copies the con-
tents of  myfile.h into the program without checking whether or not it has already included the file.  Con-
sequently, it will copy the contents of myfile.h into the code twice, and the resulting code looks like this:
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    struct MyStruct
    {
        int x;
        double y;
        char z;
    };
    struct MyStruct // <-- Error occurs here
    {
        int x;
        double y;
        char z;
    };
    
    int main()
    {
        return 0;
    }

The indicated line is the source of our compiler error – we've doubly-defined struct MyStruct.  To solve this 
problem, you might think that we should simply have a policy of not #include-ing the same file twice. In prin-
ciple this may seem easy, but in a large project where several files each #include each other, it may be possible 
for a file to indirectly #include the same file twice.  Somehow, we need to prevent this problem from happen-
ing.

The problem we're running into stems from the fact that the preprocessor has no memory about what it has done 
in the past.  Somehow, we need to give the preprocessor instructions of the form “if you haven't already done so,  
#include the contents of this file.”  For situations like these, the preprocessor supports conditional expressions.  
Just as a C++ program can use if ... else if ... else to change program flow based on variables, the prepro-
cessor can use a set of preprocessor directives to conditionally include a section of code based on #defined val-
ues.

There are several conditional structures built into the preprocessor, the most versatile of which are #if, #elif, 
#else, and #endif.  As you might expect, you use these directives according to the pattern

    #if statement
        ...
    #elif another-statement
        ...
    #elif yet-another-statement
        ...
    #else
        ...
    #endif

There are two details we need to consider here.  First, what sorts of expressions can these preprocessor directives  
evaluate?  Because the preprocessor operates before the rest of the code has been compiled, preprocessor direct -
ives can only refer to #defined constants, integer values, and arithmetic and logical expressions of those val-
ues.  Here are some examples, supposing that some constant MY_CONSTANT is defined to 42:

    #if MY_CONSTANT > 137               // Legal
    #if MY_CONSTANT * 42 == MY_CONSTANT // Legal
    #if sqrt(MY_CONSTANT) < 4           // Illegal, cannot call function sqrt
    #if MY_CONSTANT == 3.14             // Illegal, can only use integral values

In addition to the above expressions, you can use the defined predicate, which takes as a parameter the name 
of a value that may have previously been #defined.  If the constant has been #defined, defined evaluates to 
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1; otherwise it evaluates to 0.  For example, if MY_CONSTANT has been previously #defined and OTHER_CON-
STANT has not, then the following expressions are all legal:

    #if defined(MY_CONSTANT)    // Evaluates to true.
    #if defined(OTHER_CONSTANT) // Evaluates to false.
    #if !defined(MY_CONSTANT)   // Evaluates to false.

Now that we've seen what sorts of expressions we can use in preprocessor conditional expressions, what is the  
effect of these constructs?  Unlike regular if statements, which change control flow at execution, preprocessor 
conditional expressions determine whether pieces of code are included in the resulting source file.  For example,  
consider the following code:

    #if defined(A)
        cout << "A is defined." << endl;
    #elif defined(B)
        cout << "B is defined." << endl;
    #elif defined(C)
        cout << "C is defined." << endl;
    #else
        cout << "None of A, B, or C is defined." << endl;
    #endif

Here, when the preprocessor encounters these directives, whichever of the conditional expressions evaluates to  
true will have its corresponding code block included in the final program, and the rest will be ignored.  For ex -
ample, if A is defined, this entire code block will reduce down to

    cout << "A is defined." << endl;

And the rest of the code will be ignored.

One interesting use of the #if ... #endif construct is to comment out blocks of code.  Since C++ interprets 
all nonzero values as true and zero as false, surrounding a block of code in a #if 0 ... #endif block causes 
the preprocessor to eliminate that block.  Moreover, unlike the traditional /* ... */ comment type, preprocessor 
directives can be nested, so removing a block of code using #if 0 ... #endif doesn't run into the same prob-
lems as commenting the code out with /* ... */.

In addition to the above conditional directives, C++ provides two shorthand directives, #ifdef and #ifndef. 
#ifdef (if defined) is a directive that takes as an argument a symbol and evaluates to true if the symbol has 
been  #defined.  Thus the directive  #ifdef symbol is completely equivalent to  #if defined(symbol). 
C++ also provides #ifndef (if not defined), which acts as the opposite of #ifdef; #ifndef symbol is equi-
valent to #if !defined(symbol).  Although these directives are strictly weaker than the more generic #if, it 
is far more common in practice to see #ifdef and #ifndef rather than #if defined and #if !defined, 
primarily because they are more concise.

Using the conditional preprocessor directives, we can solve the problem of double-including header files. Let's 
return to our example with #include "myfile.h" appearing twice in one file.  Here is a slightly modified 
version of the myfile.h file that introduces some conditional directives:
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MyFile.h, version 2
#ifndef MyFile_included
#define MyFile_included

struct MyStruct
{
    int x;
    double y;
    char z;
};

#endif

Here, we've surrounded the entire file in a block #ifndef MyFile_included ... #endif.  The specific name 
MyFile_included is not particularly important, other than the fact that it is unique to the myfile.h file.  We 
could have just as easily chosen something like #ifndef sdf39527dkb2 or another unique name, but the cus-
tom is to choose a name determined by the file name.  Immediately after this #ifndef statement, we #define 
the constant we are considering inside the #ifndef.  To see exactly what effect this has on the code, let's return 
to our original source file, reprinted below:

    #include "myfile.h"
    #include "myfile.h" // #include the same file twice

    int main()
    {
        return 0;
    }

With the modified version of myfile.h, this code expands out to

    #ifndef MyFile_included
    #define MyFile_included

    struct MyStruct
    {
        int x;
        double y;
        char z;
    };
    
    #endif

    #ifndef MyFile_included
    #define MyFile_included
    
    struct MyStruct
    {
        int x;
        double y;
        char z;
    };
    
    #endif
    
    int main()
    {
        return 0;
    }
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Now, as the preprocessor begins evaluating the #ifndef statements, the first #ifndef ...  #endif block from 
the header file will be included since the constant MyFile_included hasn't been defined yet.  The code then 
#defines MyFile_included, so when the program encounters the second #ifndef block, the code inside the 
#ifndef ... #endif block will not be included.  Effectively, we've ensured that the contents of a file can only be 
#included once in a program.  The net program thus looks like this:

    struct MyStruct
    {
        int x;
        double y;
        char z;
    };
    
    int main()
    {
        return 0;
    }
    
Which is exactly what we wanted.  This technique, known as an include guard, is used throughout professional 
C++ code, and, in fact, the boilerplate #ifndef / #define / #endif structure is found in virtually every header 
file in use today.  Whenever writing header files, be sure to surround them with the appropriate preprocessor dir -
ectives.

Macros

One of the most common and complex uses of the preprocessor is to define macros, compile-time functions that 
accepts parameters and output code.  Despite the surface similarity,  however, preprocessor macros and C++  
functions have little in common.  C++ functions represent code that executes at runtime to manipulate data,  
while macros expand out into newly-generated C++ code during preprocessing.

To create macros, you use an alternative syntax for  #define that specifies a parameter list in addition to the 
constant name and expansion.  The syntax looks like this:

    #define macroname(parameter1, parameter2, ... , parameterN) macro-body*

Now, when the preprocessor encounters a call to a function named macroname, it will replace it with the text in 
macro-body.  For example, consider the following macro definition:

    #define PLUS_ONE(x) ((x) + 1)

Now, if we write

    int x = PLUS_ONE(137);

The preprocessor will expand this code out to

    int x = ((137) + 1);

So x will have the value 138.

If you'll notice, unlike C++ functions, preprocessor macros do not have a return value.  Macros expand out into 
C++ code, so the “return value” of a macro is the result of the expressions it creates.  In the case of PLUS_ONE, 

* Note that when using  #define,  the opening parenthesis that starts the argument list must not be preceded by whitespace.  Otherwise, the preprocessor will treat it as part of the replacement phrase for a #defined constant.
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this is the value of the parameter plus one because the replacement is interpreted as a mathematical expression.  
However, macros need not act like C++ functions.  Consider, for example, the following macro:

    #define MAKE_FUNCTION(fnName) void fnName()

Now, if we write the following C++ code:

    MAKE_FUNCTION(MyFunction)
    {
        cout << "This is a function!" << endl;
    }

The MAKE_FUNCTION macro will convert it into the function definition

    void MyFunction()
    {
        cout << "This is a function!" << endl;
    }

As you can see, this is entirely different than the PLUS_ONE macro demonstrated above.  In general, a macro can 
be expanded out to any text and that text will be treated as though it were part of the original C++ source file.  
This is a mixed blessing.  In many cases, as you'll see later in the chapter, it can be exceptionally useful.  How -
ever, as with other uses of  #define, macros can lead to  incredibly subtle bugs that can be difficult to track 
down.  Perhaps the most famous example of macros gone wrong is this MAX macro:

    #define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the macro takes in two parameters and uses the ?: operator to choose the larger of the two.  If you're not 
familiar with the ?: operator, the syntax is as follows:

    expression ? result-if-true : result-if-false

In our case, ((a) > (b) ? (a) : (b)) evaluates the expression (a) > (b).  If the statement is true, the 
value of the expression is (a); otherwise it is (b).

At first, this macro might seem innocuous and in fact will work in almost every situation.  For example:

    int x = MAX(100, 200);

Expands out to

    int x = ((100) > (200) ? (100) : (200));

Which assigns x the value 200.  However, what happens if we write the following?

    int x = MAX(MyFn1(), MyFn2());

This expands out to

    int x = ((MyFn1()) > (MyFn2()) ? (MyFn1()) : (MyFn2()));

While this will assign x the larger of MyFn1() and MyFn2(), it will not evaluate the parameters only once, as 
you would expect of a regular C++ function.  As you can see from the expansion of the MAX macro, the functions 
will be called once during the comparison and possibly twice in the second half of the statement.  If MyFn1() or 
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MyFn2() are slow, this is inefficient, and if either of the two have side effects (for example, writing to disk or  
changing a global variable), the code will be incorrect.

The above example with  MAX illustrates an important point when working with the preprocessor – in general,  
C++ functions are safer, less error-prone, and more readable than preprocessor macros.  If you ever find yourself  
wanting to write a macro, see if you can accomplish the task at hand with a regular C++ function.  If you can,  
use the C++ function instead of the macro – you'll save yourself hours of debugging nightmares.

Inline Functions

One of the motivations behind macros in pure C was program efficiency from inlining.  For example, consider 
the MAX macro from earlier, which was defined as

    #define MAX(a, b) ((a) > (b) ? (a) : (b))
 
If we call this macro, then the code for selecting the maximum element is directly inserted at the spot where the  
macro is used.  For example, the following code:
 
    int myInt = MAX(one, two);
 
Expands out to
 
    int myInt = ((one) > (two) ? (one) : (two));
 
When the compiler sees this code, it will generate machine code that directly performs the test.  If we had in-
stead written MAX as a regular function, the compiler would probably implement the call to MAX as follows:
 

1. Call the function called MAX (which actually performs the comparison)
2. Store the result in the variable myInt.

 
This is considerably less efficient than the macro because of the time required to set up the function call. In com -
puter science jargon, the macro is inlined because the compiler places the contents of the “function” at the call  
site instead of inserting an indirect jump to the code for the function.  Inlined functions can be considerably more  
efficient that their non-inline counterparts, and so for many years macros were the preferred means for writing  
utility routines.

Bjarne Stroustrup is particularly opposed to the preprocessor because of its idiosyncrasies and potential for er -
rors, and to entice programmers to use safer language features developed the inline keyword, which can be ap-
plied to functions to suggest that the compiler automatically inline them.  Inline functions are not treated like 
macros – they're actual functions and none of the edge cases of macros apply to them – but the compiler will try 
to safely inline them if at all possible.  For example, the following Max function is marked inline, so a reason-
ably good compiler should perform the same optimization on the Max function that it would on the MAX macro:
 
    inline int Max(int one, int two)
    {
        return one > two ? one : two;
    } 
 
The inline keyword is only a suggestion to the compiler and may be ignored if the compiler deems it either too 
difficult or too costly to inline the function.  However, when writing short functions it sometimes helps to mark 
the function inline to improve performance.
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A #define Cautionary Tale

#define is a powerful directive that enables you to completely transform C++.  However, many C/C++ experts  
agree that you should not use #define unless it is absolutely necessary.  Preprocessor macros and constants ob-
fuscate code and make it harder to debug, and with a few cryptic #defines veteran C++ programmers will be at 
a loss to understand your programs.  As an example, consider the following code, which references an external  
file mydefines.h:

    #include "mydefines.h"

    Once upon a time a little boy took a walk in a park
    He (the child) found a small stone and threw it (the stone) in a pond
    The end

Surprisingly, and worryingly, it is possible to make this code compile and run, provided that mydefines.h con-
tains the proper #defines.  For example, here's one possible mydefines.h file that makes the code compile:

File: mydefines.h
#ifndef mydefines_included
#define mydefines_included

#include <iostream>
using namespace std;

#define Once
#define upon
#define a
#define time upon
#define little
#define boy
#define took upon
#define walk
#define in walk
#define the
#define park a
#define He(n) n MyFunction(n x)
#define child int
#define found {
#define small return
#define stone x;
#define and in
#define threw }
#define it(n) int main() {
#define pond cout << MyFunction(137) << endl;
#define end return 0; }
#define The the

#endif

After preprocessing (and some whitespace formatting), this yields the program
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    #include <iostream>
    using namespace std;

    int MyFunction(int x)
    {
        return x;
    }
    
    int main()
    {
        cout << MyFunction(137) << endl;
        return 0;
    }

While this example is admittedly a degenerate case, it should indicate exactly how disastrous it can be for your  
programs to misuse #defined symbols.  Programmers expect certain structures when reading C++ code, and by 
obscuring those structures behind walls of  #defines you will confuse people who have to read your code. 
Worse, if you step away from your code for a short time (say, a week or a month), you may very well return to it  
with absolutely no idea how your code operates.  Consequently, when working with #define, always be sure to 
ask yourself whether or not you are improving the readability of your code.

Advanced Preprocessor Techniques

The previous section ended on a rather grim note, giving an example of preprocessor usage gone awry.  But to  
entirely eschew the preprocessor in favor of other language features would also be an error.  In several circum-
stances, the preprocessor can perform tasks that other C++ language features cannot accomplish.  The remainder  
of this chapter explores where the preprocessor can be an invaluable tool for solving problems and points out  
several strengths and weaknesses of preprocessor-based approaches.

Special Preprocessor Values

The preprocessor has access to several special values that contain information about the state of the file currently  
being compiled.  The values act like #defined constants in that they are replaced whenever encountered in a 
program.  For example, the values __DATE__ and __TIME__ contain string representations of the date and time 
that the program was compiled.  Thus, you can write an automatically-generated “about this program” function  
using syntax similar to this:

    string GetAboutInformation()
    {
        stringstream result;
        result << "This program was compiled on  " << __DATE__;
        result << " at time " << __TIME__;
        return result.str();
    }

Similarly, there are two other values, __LINE__ and __FILE__, which contain the current line number and the 
name of the file being compiled.  We'll see an example of where __LINE__ and __FILE__ can be useful later in 
this chapter.

String Manipulation Functions

While often dangerous, there are times where macros can be more powerful or more useful than regular C++  
functions.  Since macros work with source-level text strings instead of at the C++ language level, some pieces of  
information are available to macros that are not accessible using other C++ techniques.  For example, let's return  
to the MAX macro we used in the previous section:
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    #define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the arguments a and b to MAX are passed by string – that is, the arguments are passed as the strings that 
compose them.  For example, MAX(10, 15) passes in the value 10 not as a numeric value ten, but as the char-
acter  1 followed by the character  0.  The preprocessor provides two different operators for manipulating the 
strings passed in as parameters.  First is the stringizing operator, represented by the # symbol, which returns a 
quoted, C string representation of the parameter.  For example, consider the following macro:

    #define PRINTOUT(n) cout << #n << " has value  " << (n) << endl

Here, we take in a single parameter, n.  We then use the stringizing operator to print out a string representation of 
n, followed by the value of the expression n.  For example, given the following code snippet:

    int x = 137;
    PRINTOUT(x * 42);

After preprocessing, this yields the C++ code

    int x = 137;
    cout << "x * 42" << " has value " << (x * 42) << endl;

Note that after the above program has been compiled from C++ to machine code, any notions of the original  
variable  x or the individual expressions making up the program will have been completely eliminated, since 
variables exist only at the C++ level.  However, through the stringizing operator, it is possible to preserve a 
string version of portions of the C++ source code in the final program, as demonstrated above.  This is useful  
when writing diagnostic functions, as you'll see later in this chapter.

The second preprocessor string manipulation operator is the  string concatenation operator, also known as the 
token-pasting operator.  This operator, represented by ##, takes the string value of a parameter and concatenates 
it with another string.  For example, consider the following macro:

    #define DECLARE_MY_VAR(type) type my_##type

The purpose of this macro is to allow the user to specify a type (for example, int), and to automatically generate 
a variable declaration of that type whose name is my_type, where type is the parameter type.  Here, we use the 
## operator to take the name of the type and concatenate it with the string my_.  Thus, given the following macro 
call:

    DECLARE_MY_VAR(int);

The preprocessor would replace it with the code

    int my_int;

Note that when working with the token-pasting operator, if the result of the concatenation does not form a single 
C++  token  (a  valid  operator  or  name),  the  behavior  is  undefined.   For  example,  calling 
DECLARE_MY_VAR(const int) will have undefined behavior, since concatenating the strings my_ and const 
int does not yield a single string (the result is const int my_const int).

Practical Applications of the Preprocessor I: Diagnostic Debugging Functions

When writing a program, at times you may want to ensure that certain invariants about your program hold true –  
for example, that certain pointers cannot be NULL, that a value is always less than some constant, etc.  While in 
many cases these conditions should be checked using a language feature called exception handling, in several 
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cases it is acceptable to check them at runtime using a standard library macro called assert.  assert, exported 
by the header <cassert>, is a macro that checks to see that some condition holds true.  If so, the macro has no  
effect.  Otherwise, it prints out the statement that did not evaluate to true, along with the file and line number in  
which it was written, then terminates the program.  For example, consider the following code:

    void MyFunction(int *myPtr)
    {
        assert(myPtr != NULL);
        *myPtr = 137;
    }

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print out a 
message that might look something like this:

    Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because assert abruptly terminates the program without giving the rest of the application a chance to respond,  
you should not use assert as a general-purpose error-handling routine.  In practical software development, as-
sert is usually used to express programmer assumptions about the state of execution.  For example, assuming 
we have some enumerated type  Color, suppose we want to write a function that returns whether a color is a 
primary color.  Here's one possible implementation:

    bool IsPrimaryColor(Color c)
    {
        switch(c)
        {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }
    
Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color.  Otherwise, we re-
turn that it is not a primary color.  However, what happens if the parameter is not a valid Color, perhaps if the 
call is IsPrimaryColor(Color(-1))?  In this function, since we assume that that the parameter is indeed a 
color, we might want to indicate that to the program by explicitly putting in an assert test.  Here's a modified 
version of the function, using assert and assuming the existence of a function IsColor:

    bool IsPrimaryColor(Color c)
    {
        assert(IsColor(c)); // We assume that this is really a color.
        switch(c)
        {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }
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Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to the line 
that caused the problem.  If we have a good debugger, we should be able to figure out which caller erroneously 
passed in an invalid Color and can better remedy the problem.  Were we to ignore this case entirely, we might 
have considerably more trouble debugging the error, since we would have no indication of where the problem 
originated.

You should not, however, use assert to check that input from GetLine is correctly-formed, for example, since 
it makes far more sense to reprompt the user than to terminate the program.

While assert can be used to catch a good number of programmer errors during development, it has the unfortu-
nate side-effect of slowing a program down at runtime because of the overhead of the extra checking involved. 
Consequently, most major compilers disable the assert macro in release or optimized builds.  This may seem 
dangerous, since it eliminates checks for problematic input, but is actually not a problem because, in theory, you  
shouldn't be compiling a release build of your program if  assert statements fail during execution.*  Because 
assert is entirely disabled in optimized builds, you should use  assert only to check that specific relations 
hold true, never to check the return value of a function.  If an assert contains a call to a function, when as-
sert is disabled in release builds, the function won't be called, leading to different behavior in debug and re-
lease builds.  This is a persistent source of debugging headaches.

Using the tools outlined in this chapter, it's possible for us to write our own version of the assert macro, which 
we'll call CS106LAssert, to see how to use the preprocessor to design such utilities.  We'll split the work into 
two parts – a function called DoCS106LAssert, which actually performs the testing and error-printing, and the 
macro CS106LAssert, which will set up the parameters to this function appropriately.  The DoCS106LAssert 
function will look like this:

    #include <cstdlib> // for abort();

    /* These parameters will be assumed to be correct. */
    void DoCS106LAssert(bool invariant, string statement, string file, int line)
    {
        if(!invariant)
        {
            cerr << "CS106LAssert Failed!" << endl;
            cerr << "Expression: " << statement << endl;
            cerr << "File:       " << file << endl;
            cerr << "Line:       " << line << endl;
            abort(); // Quits program and signals error to the OS.
        }
    }

This function takes in the expression to evaluate, along with a string representation of that statement, the name 
of the file it is found in, and the line number of the initial expression.  It then checks the invariant, and, if it fails,  
signals an error and quits the program by calling abort().  Since these parameters are rather bulky, we'll hide 
them behind the scenes by writing the CS106LAssert macro as follows:

    #define CS106LAssert(expr) DoCS106LAssert(expr, #expr, __FILE__, __LINE__)

This macro takes in a single parameter, an expression expr, and passes it in to the DoCS106LAssert function. 
To set up the second parameter to DoCS106LAssert, we get a string representation of the expression using the 
stringizing operator on expr.  Finally, to get the file and line numbers, we use the special preprocessor symbols  
__FILE__ and __LINE__.  Note that since the macro is expanded at the call site,  __FILE__ and __LINE__ 
refer to the file and line where the macro is used, not where it was declared.

* In practice, this isn't always the case.  But it's still a nice theory!
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To see CS106LAssert in action, suppose we make the following call to CS106LAssert in myfile.cpp at line 
137.  Given this code:

    CS106LAssert(myPtr != NULL);

The macro expands out to

    DoCS106LAssert(myPtr != NULL, "myPtr != NULL", __FILE__, __LINE__);

Which in turn expands to

    DoCS106LAssert(myPtr != NULL, "myPtr != NULL", "myfile.cpp", 137);

Which is exactly what we want.

Now, suppose that  we've used  CS106LAssert throughout a C++ program and have successfully debugged 
many of its parts.  In this case, we want to disable CS106LAssert for a release build, so that the final program 
doesn't have the overhead of all the runtime checks.  To allow the user to toggle whether CS106LAssert has 
any effect, we'll let them #define a constant, NO_CS106L_ASSERT, that disables the assertion.  If the user does 
not define  NO_CS106L_ASSERT, we'll use  #define to have the  CS106LAssert macro perform the runtime 
checks.  Otherwise, we'll have the macro do nothing.  This is easily accomplished using #ifndef ... #else ... 
#endif to determine the behavior of CS106LAssert.  This smart version of CS106LAssert is shown below:

    #ifndef NO_CS106L_ASSERT // Enable assertions

    #include <cstdlib> // for abort();

    /* Note that we define DoCS106LAssert inside this block, since if
     * the macro is disabled there's no reason to leave this function sitting
     * around.
     */
    void DoCS106LAssert(bool invariant, string statement, string file, int line)
    {
        if(!invariant)
        {
            cerr << "CS106LAssert Failed!" << endl;
            cerr << "Expression: " << statement << endl;
            cerr << "File:  " << file << endl;
            cerr << "Line: " << line << endl;
            abort(); // Quits program and signals error to the OS.
        }
    }
    
    #define CS106LAssert(expr) DoCS106LAssert(expr, #expr, __FILE__, __LINE__)
    
    #else // Disable assertions
    
    /* Define CS106LAssert as a macro that expands to nothing.  Now, if we call
     * CS106LAssert in our code, it has absolutely no effect.
     */
    #define CS106LAssert(expr) /* nothing */
    
    #endif



- 200 -  Chapter 7: The Preprocessor

Practical Applications of the Preprocessor II: The X Macro Trick

That macros give C++ programs access to their own source code can be used in other ways as well.  One uncom-
mon programming technique that uses the preprocessor is known as the X Macro trick, a way to specify data in 
one format but have it available in several formats.

Before exploring the X Macro trick, we need to cover how to redefine a macro after it has been declared.  Just as  
you can define a macro by using #define, you can also undefine a macro using #undef.  The #undef prepro-
cessor directive takes in a symbol that has been previously #defined and causes the preprocessor to ignore the 
earlier definition.  If the symbol was not already defined, the #undef directive has no effect but is not an error. 
For example, consider the following code snippet:

    #define MY_INT 137
    int x = MY_INT;   // MY_INT is replaced
    #undef MY_INT;
    int MY_INT = 42;  // MY_INT not replaced

The preprocessor will rewrite this code as

    int x = 137;
    int MY_INT = 42;

Although MY_INT was once a #defined constant, after encountering the #undef statement, the preprocessor 
stopped treating it as such.  Thus, when encountering int MY_INT = 42, the preprocessor made no replace-
ments and the code compiled as written.

To introduce the X Macro trick, let's consider a common programming problem and see how we should go about 
solving it.  Suppose that we want to write a function that, given as an argument an enumerated type, returns the  
string representation of the enumerated value.  For example, given the enum

    enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

We want to write a function called ColorToString that returns a string representation of the color.  For ex-
ample, passing in the constant Red should hand back the string "Red", Blue should yield "Blue", etc.  Since 
the names of enumerated types are lost during compilation, we would normally implement this function using 
code similar to the following:

    string ColorToString(Color c)
    {
        switch(c)
        {
            case Red: return "Red";
            case Blue: return "Blue";
            case Green: return "Green";
            case Cyan: return "Cyan";
            case Magenta: return "Magenta";
            case Yellow: return "Yellow";
            default: return "<unknown>";
        }
    }

Now, suppose that we want to write a function that, given a color, returns the opposite color.*  We'd need another 
function, like this one:* For the purposes of this example, we'll work with additive colors.  Thus red is the opposite of cyan, yellow is the  opposite of blue, etc.
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    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result
        }
    }

These two functions will work correctly, and there's nothing functionally wrong with them as written.  The prob-
lem, though, is that these functions are not scalable.  If we want to introduce new colors, say, White and Black, 
we'd need to change both ColorToString and GetOppositeColor to incorporate these new colors.  If we ac-
cidentally forget to change one of the functions, the compiler will give no warning that something is missing and 
we will only notice problems during debugging.  The problem is that a color encapsulates more information than 
can be expressed in an enumerated type.  Colors also have names and opposites, but the C++  enum Color 
knows only a unique ID for each color and relies on correct implementations of ColorToString and GetOp-
positeColor for the other two.  Somehow, we'd like to be able to group all of this information into one place. 
While we might be able to accomplish this using a set of C++ struct constants (e.g. defining a color struct 
and making const instances of these structs for each color), this approach can be bulky and tedious.  Instead, 
we'll choose a different approach by using X Macros.

The idea behind X Macros is that we can store all of the information needed above inside of calls to preprocessor  
macros.  In the case of a color, we need to store a color's name and opposite.  Thus, let's suppose that we have  
some macro called DEFINE_COLOR that takes in two parameters corresponding to the name and opposite color. 
We next create a new file, which we'll call color.h, and fill it with calls to this DEFINE_COLOR macro that ex-
press all of the colors we know (let's ignore the fact that we haven't actually defined DEFINE_COLOR yet; we'll 
get there in a moment).  This file looks like this:

File: color.h
DEFINE_COLOR(Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE_COLOR(Green, Magenta)
DEFINE_COLOR(Magenta, Green)
DEFINE_COLOR(Blue, Yellow)
DEFINE_COLOR(Yellow, Blue)

Two things about  this  file  should jump out  at  you.   First,  we haven't  surrounded the file  in  the  traditional 
#ifndef ... #endif boilerplate, so clients can #include this file multiple times.  Second, we haven't provided 
an implementation for  DEFINE_COLOR, so if a caller  does include this file, it will cause a compile-time error. 
For now, don't worry about these problems – you'll see why we've structured the file this way in a moment.

Let's see how we can use the X Macro trick to rewrite GetOppositeColor, which for convenience is reprinted 
below:
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    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result
        }
    }

Here, each one of the case labels in this switch statement is written as something of the form

    case color: return opposite;

Looking back at our color.h file, notice that each DEFINE_COLOR macro has the form DEFINE_COLOR(col-
or, opposite).  This suggests that we could somehow convert each of these DEFINE_COLOR statements into 
case labels by crafting the proper #define.  In our case, we'd want the #define to make the first parameter 
the argument of the case label and the second parameter the return value.  We can thus write this #define as

    #define DEFINE_COLOR(color, opposite) case color: return opposite;

Thus, we can rewrite GetOppositeColor using X Macros as

    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            #define DEFINE_COLOR(color, opposite) case color: return opposite;
            #include "color.h"
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

This is pretty cryptic, so let's walk through it one step at a time.  First, let's simulate the preprocessor by repla-
cing the line #include "color.h" with the full contents of color.h:

    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            #define DEFINE_COLOR(color, opposite) case color: return opposite;
            DEFINE_COLOR(Red, Cyan)
            DEFINE_COLOR(Cyan, Red)
            DEFINE_COLOR(Green, Magenta)
            DEFINE_COLOR(Magenta, Green)
            DEFINE_COLOR(Blue, Yellow)
            DEFINE_COLOR(Yellow, Blue)
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

Now, we replace each DEFINE_COLOR by instantiating the macro, which yields the following:
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    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

Finally,  we  #undef the  DEFINE_COLOR macro,  so that  the  next  time  we need to  provide a  definition  for 
DEFINE_COLOR, we don't have to worry about conflicts with the existing declaration.  Thus, the final code for 
GetOppositeColor, after expanding out the macros, yields

    Color GetOppositeColor(Color c)
    {
        switch(c)
        {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result.
        }
    }

Which is exactly what we wanted.

The fundamental idea underlying the X Macros trick is that all of the information we can possibly need about a 
color is contained inside of the file color.h.  To make that information available to the outside world, we em-
bed all of this information into calls to some macro whose name and parameters are known.  We do not, how-
ever, provide an implementation of this macro inside of color.h because we cannot anticipate every possible 
use of the information contained in this file.  Instead, we expect that if another part of the code wants to use the 
information, it will provide its own implementation of the DEFINE_COLOR macro that extracts and formats the 
information.  The basic idiom for accessing the information from these macros looks like this:

    #define macroname(arguments) /* some use for the arguments */
    #include "filename"
    #undef macroname

Here, the first line defines the mechanism we will use to extract the data from the macros.  The second includes 
the file containing the macros, which supplies the macro the data it needs to operate.  The final step clears the  
macro so that the information is available to other callers.  If you'll notice, the above technique for implementing 
GetOppositeColor follows this pattern precisely.

We can also use the above pattern to rewrite the  ColorToString function.  Note that inside of  ColorTo-
String, while we can ignore the second parameter to DEFINE_COLOR, the macro we define to extract the in-
formation still needs to have two parameters.  To see how to implement ColorToString, let's first revisit our 
original implementation:
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    string ColorToString(Color c)
    {
        switch(c)
        {
            case Red: return "Red";
            case Blue: return "Blue";
            case Green: return "Green";
            case Cyan: return "Cyan";
            case Magenta: return "Magenta";
            case Yellow: return "Yellow";
            default: return "<unknown>";
        }
    }

If you'll notice, each of the case labels is written as

    case color: return "color";

Thus, using X Macros, we can write ColorToString as

     string ColorToString(Color c)
    {
        switch(c)
        {
            /* Convert something of the form DEFINE_COLOR(color, opposite)
             * into something of the form 'case color: return "color"';
             */
            #define DEFINE_COLOR(color, opposite) case color: return #color;
            #include "color.h"
            #undef DEFINE_COLOR
    
            default: return "<unknown>";
        }
    }

In this particular implementation of DEFINE_COLOR, we use the stringizing operator to convert the color para-
meter into a string for the return value.  We've used the preprocessor to generate both GetOppositeColor and 
ColorToString!

There is one final step we need to take, and that's to rewrite the initial  enum Color using the X Macro trick. 
Otherwise, if we make any changes to color.h, perhaps renaming a color or introducing new colors, the enum 
will not reflect these changes and might result in compile-time errors.  Let's revisit  enum Color, which is re-
printed below:

    enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

While in the previous examples of ColorToString and GetOppositeColor there was a reasonably obvious 
mapping between DEFINE_COLOR macros and case statements, it is less obvious how to generate this enum us-
ing the X Macro trick.  However, if we rewrite this enum as follows:
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    enum Color {
        Red, 
        Green, 
        Blue, 
        Cyan, 
        Magenta, 
        Yellow
    };

It should be slightly easier to see how to write this enum in terms of X Macros.  For each DEFINE_COLOR macro 
we provide, we'll simply extract the first parameter (the color name) and append a comma.  In code, this looks  
like

    enum Color {
        #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
        #include "color.h"
        #undef DEFINE_COLOR
    };

This, in turn, expands out to

    enum Color {
        #define DEFINE_COLOR(color, opposite) color,
        DEFINE_COLOR(Red, Cyan)
        DEFINE_COLOR(Cyan, Red)
        DEFINE_COLOR(Green, Magenta)
        DEFINE_COLOR(Magenta, Green)
        DEFINE_COLOR(Blue, Yellow)
        DEFINE_COLOR(Yellow, Blue)
        #undef DEFINE_COLOR
    };
    
Which in turn becomes

    enum Color {
        Red, 
        Green, 
        Blue, 
        Cyan, 
        Magenta, 
        Yellow,
    };

Which is exactly what we want.  You may have noticed that there is a trailing comma at after the final color 
(Yellow), but this is not a problem – it turns out that it's totally legal C++ code.

Analysis of the X Macro Trick

The X Macro-generated functions have several advantages over the hand-written versions.  First, the X macro 
trick makes the code considerably shorter.  By relying on the preprocessor to perform the necessary expansions,  
we can express all of the necessary information for an object inside of an X Macro file and only need to write the  
syntax necessary to perform some task once.  Second, and more importantly, this approach means that adding or  
removing Color values is simple.  We simply need to add another DEFINE_COLOR definition to color.h and 
the changes will automatically appear in all of the relevant functions.  Finally, if we need to incorporate more in-
formation into the Color object, we can store that information in one location and let any callers that need it ac -
cess it without accidentally leaving one out.
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That said, X Macros are not a perfect technique.  The syntax is considerably trickier and denser than in the ori -
ginal implementation, and it's less clear to an outside reader how the code works.  Remember that readable code 
is just as important as correct code, and make sure that you've considered all of your options before settling on X 
Macros.  If you're ever working in a group and plan on using the X Macro trick, be sure that your other group  
members are up to speed on the technique and get their approval before using it.*

More to Explore / Practice Problems

I've combined the “More to Explore” and “Practice Problems” sections because many of the topics we didn't  
cover in great detail in this chapter are best understood by playing around with the material.  Here's a sampling  
of different preprocessor tricks and techniques, mixed in with some programming puzzles:

1. What is the difference between angle brackets and double-quotes in the context of #include?
 

2. Why is it a bad idea to use #define to create constants?  What should you do instead?

3. Give an example, besides preventing problems from #include-ing the same file twice, where #ifdef 
and #ifndef might be useful.  (Hint: What if you're working on a project that must run on Windows,  
Mac OS X, and Linux and want to use platform-specific features of each?)
 

4. What is an include guard?  How do you write one?  When and why are they necessary?

5. Write a regular C++ function called Max that returns the larger of two int values.  Explain why it does 
not have the same problems as the macro MAX covered earlier in this chapter.

6. Give one advantage of the macro MAX over the function Max you wrote in the previous problem. (Hint:  
What is the value of Max(1.37, 1.24)?  What is the value of MAX(1.37, 1.24)?)

7. The following C++ code is illegal because the #if directive cannot call functions:

    bool IsPositive(int x)
    {
        return x < 0;
    }
 
    #if IsPositive(MY_CONSTANT) // <-- Error occurs here
        #define result true
    #else
        #define result false
    #endif
 
Given your knowledge of how the preprocessor works, explain why this restriction exists. ♦

8. Compilers rarely inline recursive functions, even if they are explicitly marked  inline.  Why do you 
think this is?

9. Most of the STL algorithms are inlined.  Considering the complexity of the implementation of accumu-
late from the chapter on STL algorithms, explain why this is.

* The X Macro trick is a special case of a more general technique known as  preprocessor metaprogramming.  If you're interested in learning more about preprocessor metaprogramming, consider looking into the Boost Meta-programming Library (MPL), a professional C++ package that simplifies common metaprogramming tasks.



Chapter 7: The Preprocessor - 207 -
10. A common but nonstandard variant of the  assert macro is the verify macro which, like  assert, 

checks a condition at runtime and prints and error and terminates if the condition is false.  However, in 
optimized builds, verify is not disabled, but simply does not abort at runtime if the condition is false. 
This allows you to use verify to check the return value of functions directly (Do you see why?).  Cre-
ate a function called  CS106LVerify that, unless the symbol  NO_CS106L_VERIFY is defined, checks 
the parameter and aborts the program if it is false.  Otherwise, if NO_CS106L_VERIFY is defined, check 
the condition, but do not terminate the program if it is false.

11. Another common debugging macro is a “not reached” macro which automatically terminates the pro-
gram if executed.  “Not reached” macros are useful inside constructs such as switch statements where 
the default label should never be encountered.  Write a macro, CS106LNotReached, that takes in a 
string parameter and, if executed, prints out the string, file name, and line number, then calls abort to 
end the program.   As with  CS106LAssert and  CS106LVerify,  if  the  user  #defines  the symbol 
NO_CS106L_NOTREACHED, change the behavior of CS106LNotReached so that it has no effect.  ♦

12. If  you've  done  the  two  previous  problems,  you'll  notice  that  we  now  have  three  constants, 
NO_CS106L_ASSERT,  NO_CS106L_VERIFY,  and  NO_CS106L_NOTREACHED,  that  all  must  be 
#defined to disable them at runtime.  This can be a hassle and could potentially be incorrect if we acci -
dentally omit one of these symbols.  Write a code snippet that checks to see if a symbol named DIS-
ABLE_ALL_CS106L_DEBUG is defined and, if so, disables all of the three aforementioned debugging 
tools.  However, still give the user the option to selectively disable the individual functions.

13. Modify the earlier definition of enum Color such that after all of the colors defined in color.h, there 
is a special value,  NOT_A_COLOR,  that specifies a nonexistent color.  (Hint: Do you actually need to  
change color.h to do this?) ♦

14. Using X Macros, write a function StringToColor which takes as a parameter a string and returns 
the Color object whose name exactly matches the input string.  If there are no colors with that name, re-
turn NOT_A_COLOR as a sentinel.  For example, calling StringToColor("Green") would return the 
value Green, but calling StringToColor("green") or StringToColor("Olive") should both re-
turn NOT_A_COLOR.

15. Suppose that you want to make sure that the enumerated values you've made for Color do not conflict 
with other enumerated types that might be introduced into your program.  Modify the earlier definition  
of DEFINE_COLOR used to define enum Color so that all of the colors are prefaced with the identifier 
eColor_.  For example, the old value Red should change to eColor_Red, the old Blue would be eCo-
lor_Blue, etc.  Do not change the contents of color.h. (Hint: Use one of the preprocessor string-ma-
nipulation operators) ♦

16. The  #error directive causes a compile-time error if the preprocessor encounters it.  This may sound  
strange at first, but is an excellent way for detecting problems during preprocessing that might snowball  
into larger problems later in the code.  For example, if code uses compiler-specific features (such as the  
OpenMP library), it might add a check to see that a compiler-specific #define is in place, using #er-
ror to report an error if it isn't.  The syntax for #error is #error message, where message is a mes-
sage to the user explaining the problem.  Modify color.h so that if a caller #includes the file without 
first  #define-ing the  DEFINE_COLOR macro, the preprocessor reports an error containing a message 
about how to use the file.
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17. Suppose that you are designing a control system for an autonomous vehicle in the spirit of the DARPA 
Grand Challenge.  As part of its initialization process,  the program needs to call  a function named  
InitCriticalInfrastructure() to set up the car's sensor arrays.  In order for the rest of the pro-
gram to respond in the event that the startup fails, InitCriticalInfrastructure() returns a bool 
indicating whether or not it succeeded.  To ensure that the function call succeeds, you check the return 
value of InitCriticalInfrastructure() as follows:
 
     assert(InitCriticalInfrastructure());
 
During testing, your software behaves admirably and you manage to secure funding, fame, and prestige. 
You then compile your program in release mode, install it in a production car, and to your horror find 
that the car immediately drives off a cliff.  Later analysis determines that the cause of the problem was 
that InitCriticalInfrastructure had not been called and that consequently the sensor array had 
failed to initialize.
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18. Why did the release version of the program not call  InitCriticalInfrastructure?  How would 

you rewrite the code that checks for an error so that this problem doesn't occur?If you're up for a chal-
lenge, consider the following problem.  Below is a table summarizing various units of length:

Unit Name #meters / unit Suffix System
Meter 1.0 m Metric

Centimeter 0.01 cm Metric

Kilometer 1000.0 km Metric

Foot 0.3048 ft English

Inch 0.0254 in English

Mile 1609.344 mi English

Astronomical Unit 1.496 x 1011 AU Astronomical

Light Year 9.461 × 1015 ly Astronomical

Cubit* 0.55 cubit Archaic

 a) Create a file called  units.h that uses the X macro trick to encode the above table as calls to a 
macro DEFINE_UNIT.  For example, one entry might be DEFINE_UNIT(Meter, 1.0, m, Met-
ric).

 b) Create  an  enumerated  type,  LengthUnit,  which  uses  the  suffix  of  the  unit,  preceded  by 
eLengthUnit_, as the name for the unit.  For example, a cubit is eLengthUnit_cubit, while a 
mile would be  eLengthUnit_mi.   Also define an enumerated value  eLengthUnit_ERROR that 
serves as a sentinel indicating that the value is invalid.

 c) Write a function called SuffixStringToLengthUnit that accepts a string representation of a 
suffix and returns the LengthUnit corresponding to that string.  If the string does not match the 
suffix, return eLengthUnit_ERROR.

 d) Create  a  struct,  Length,  that  stores  a  double and  a  LengthUnit.   Write  a  function 
ReadLength that prompts the user for a double and a string representing an amount and a unit 
suffix and stores data in a Length.  If the string does not correspond to a suffix, reprompt the user. 
You can modify the code for GetInteger from the chapter on streams to make an implementation 
of GetReal.

 e) Create a function, GetUnitType, that takes in a Length and returns the unit system in which it oc-
curs (as a string)

 f) Create  a  function,  PrintLength,  that  prints  out  a  Length in  the  format  amount suf-
fix (amount unitnames).   For example, if  a  Length stores 104.2 miles,  it  would print  out 
104.2mi (104.2 Miles)

 g) Create a function,  ConvertToMeters, which takes in a  Length and converts it to an equivalent 
length in meters.

Surprisingly, this problem is not particularly long – the main challenge is the user input, not the unit 
management!

* There is no agreed-upon standard for this unit, so this is an approximate average of the various lengths.


	Chapter 7:  The Preprocessor

