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Introduction

The previous handout on the preprocessor ended on a rather grim note, giving an example of preprocessor 
usage gone awry.  But to entirely eschew the preprocessor in favor of other language features would also 
be an error.  In several circumstances, the preprocessor can perform tasks that other C++ language 
features cannot accomplish.  This handout explores several areas where the preprocessor can be an 
invaluable tool for solving problems and points out several strengths and weaknesses of preprocessor-
based approaches.

Special Preprocessor Values

The preprocessor has access to several special values that contain information about the state of the file 
currently being compiled.  The values act like #defined constants in that they are replaced whenever 
encountered in a program.  For example, the values __DATE__ and __TIME__ contain string 
representations of the date and time that the program was compiled.  Thus, you can write an 
automatically-generated “about this program” function using syntax similar to this:

string GetAboutInformation()
{
    stringstream result;
    result << "This program was compiled on  " << __DATE__;
    result << " at time " << __TIME__;
    return result.str();
}

Similarly, there are two other values, __LINE__ and __FILE__, which contain the current line number 
and the name of the file being compiled.  We'll see an example of where __LINE__ and __FILE__ can 
be useful later in this handout.

String Manipulation Functions

While often dangerous, there are times where macros can be more powerful or more useful than regular 
C++ functions.  Since macros work with source-level text strings instead of at the C++ language level, 
some pieces of information are available to macros that are not accessible using other C++ techniques. 
For example, let's return to the MAX macro we used in the previous handout:

#define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the arguments a and b to MAX are passed by string – that is, the arguments are passed as the strings 
that compose them.  For example, MAX(10, 15) passes in the value 10 not as a numeric value ten, but as 
the character 1 followed by the character 0.  The preprocessor provides two different operators for 
manipulating the strings passed in as parameters.  First is the stringizing operator, represented by the # 
symbol, which returns a quoted, C string representation of the parameter.  For example, consider the 
following macro:
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#define PRINTOUT(n) cout << #n << " has value  " << (n) << endl

Here, we take in a single parameter, n.  We then use the stringizing operator to print out a string 
representation of n, followed by the value of the expression n.  For example, given the following code 
snippet:

int x = 137;
PRINTOUT(x * 42);

After preprocessing, this yields the C++ code

int x = 137;
cout << "x * 42" << " has value " << (x * 42) << endl;

Note that after the above program has been compiled from C++ to machine code, any notions of the 
original variable x or the individual expressions making up the program will have been completely 
eliminated, since variables exist only at the C++ level.  However, through the stringizing operator, it is 
possible to preserve a string version of portions of the C++ source code in the final program, as 
demonstrated above.  This is useful when writing diagnostic functions, as you'll see later in this handout.

The second preprocessor string manipulation operator is the string concatenation operator, also known as 
the token-pasting operator.  This operator, represented by ##, takes the string value of a parameter and 
concatenates it with another string.  For example, consider the following macro:

#define DECLARE_MY_VAR(type) type my_##type

The purpose of this macro is to allow the user to specify a type (for example, int), and to automatically 
generate a variable declaration of that type whose name is my_type, where type is the parameter type.  
Here, we use the ## operator to take the name of the type and concatenate it with the string my_.  Thus, 
given the following macro call:

DECLARE_MY_VAR(int);

The preprocessor would replace it with the code

int my_int;

Note that when working with the token-pasting operator, if the result of the concatenation does not form a 
single C++ token (a valid operator or name), the behavior is undefined.  For example, calling 
DECLARE_MY_VAR(const int) will have undefined behavior, since concatenating the strings my_ and 
const int does not yield a single string (the result is const int my_const int).

Practical Applications of the Preprocessor I: Diagnostic Debugging Functions

When writing a program, at times you may want to ensure that certain invariants about your program hold 
true – for example, that certain pointers cannot be NULL, that a value is always less than some constant, 
etc.  While in many cases these conditions should be checked using a language feature called exception 
handling, in several cases it is acceptable to check them at runtime using a standard library macro called 
assert.  assert, exported by the header <cassert>, is a macro that checks to see that some condition 
holds true.  If so, the macro has no effect.  Otherwise, it prints out the statement that did not evaluate to 
true, along with the file and line number in which it was written, then terminates the program.  For 
example, consider the following code:
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void MyFunction(int *myPtr)
{
    assert(myPtr != NULL);
    *myPtr = 137;
}

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print 
out a message that might look something like this:

Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because assert abruptly terminates the program without giving the rest of the application a chance to 
respond, you should not use assert as a general-purpose error-handling routine.  In practical software 
development, assert is usually used to express programmer assumptions about the state of execution. 
For example, assuming we have some enumerated type Color, suppose we want to write a function that 
returns whether a color is a primary color.  Here's one possible implementation:

bool IsPrimaryColor(Color c)
{
    switch(c)
    {
        case Red:
        case Green:
        case Blue:
            return true;
        default:
            /* Otherwise, must not be a primary color. */
            return false;
    }
}

Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color.  Otherwise, 
we return that it is not a primary color.  However, what happens if the parameter is not a valid Color, 
perhaps if the call is IsPrimaryColor(Color(-1))?  In this function, since we assume that that the 
parameter is indeed a color, we might want to indicate that to the program by explicitly putting in an 
assert test.  Here's a modified version of the function, using assert and assuming the existence of a 
function IsColor:

bool IsPrimaryColor(Color c)
{
    assert(IsColor(c)); // We assume that this is really a color.
    switch(c)
    {
        case Red:
        case Green:
        case Blue:
            return true;
        default:
            /* Otherwise, must not be a primary color. */
            return false;
    }
}
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Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to 
the line that caused the problem.  If we have a good debugger, we should be able to figure out which 
caller erroneously passed in an invalid Color and can better remedy the problem.  Were we to ignore this 
case entirely, we might have considerably more trouble debugging the error, since we would have no 
indication of where the problem originated.

You should not, however, use assert to check that input from GetLine is correctly-formed, for 
example, since it makes far more sense to reprompt the user than to terminate the program.

While assert can be used to catch a good number of programmer errors during development, it has the 
unfortunate side-effect of slowing a program down at runtime because of the overhead of the extra 
checking involved.  Consequently, most major compilers disable the assert macro in release or 
optimized builds.  This may seem dangerous, since it eliminates checks for problematic input, but is 
actually not a problem because, in theory, you shouldn't be compiling a release build of your program if 
assert statements fail during execution.*  Because assert is entirely disabled in optimized builds, you 
should use assert only to check that specific relations hold true, never to check the return value of a 
function.  If an assert contains a call to a function, when assert is disabled in release builds, the 
function won't be called, leading to different behavior in debug and release builds.  This is a persistent 
source of debugging headaches.

Using the tools outlined in this handout, it's possible for us to write our own version of the assert 
macro, which we'll call CS106LAssert, to see how to use the preprocessor to design such utilities.  We'll 
split the work into two parts – a function called DoCS106LAssert, which actually performs the testing 
and error-printing, and the macro CS106LAssert, which will set up the parameters to this function 
appropriately.  The DoCS106LAssert function will look like this:

#include <cstdlib> // for abort();

/* These parameters will be assumed to be correct. */
void DoCS106LAssert(bool invariant, string statement, string file, int line)
{
    if(!invariant)
    {
        cerr << "CS106LAssert Failed!" << endl;
        cerr << "Expression: " << statement << endl;
        cerr << "File:       " << file << endl;
        cerr << "Line:       " << line << endl;
        abort(); // Quits program and signals error to the OS.
    }
}

This function takes in the expression to evaluate, along with a string representation of that statement, the 
name of the file it is found in, and the line number of the initial expression.  It then checks the invariant, 
and, if it fails, signals an error and quits the program by calling abort().  Since these parameters are 
rather bulky, we'll hide them behind the scenes by writing the CS106LAssert macro as follows:

#define CS106LAssert(expr) DoCS106LAssert(expr, #expr, __FILE__, __LINE__)

This macro takes in a single parameter, an expression expr, and passes it in to the DoCS106LAssert 
function.  To set up the second parameter to DoCS106LAssert, we get a string representation of the 
expression using the stringizing operator on expr.  Finally, to get the file and line numbers, we use the 

* In practice, this isn't always the case.  But it's still a nice theory!
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special preprocessor symbols __FILE__ and __LINE__.  Note that since the macro is expanded at the 
call site, __FILE__ and __LINE__ refer to the file and line where the macro is used, not where it was 
declared.

To see CS106LAssert in action, suppose we make the following call to CS106LAssert in myfile.cpp 
at line 137.  Given this code:

CS106LAssert(myPtr != NULL);

The macro expands out to

DoCS106LAssert(myPtr != NULL, "myPtr != NULL", __FILE__, __LINE__);

Which in turn expands to

DoCS106LAssert(myPtr != NULL, "myPtr != NULL", "myfile.cpp", 137);

Which is exactly what we want.

Now, suppose that we've used CS106LAssert throughout a C++ program and have successfully 
debugged many of its parts.  In this case, we want to disable CS106LAssert for a release build, so that 
the final program doesn't have the overhead of all the runtime checks.  To allow the user to toggle whether 
CS106LAssert has any effect, we'll let them #define a constant, NO_CS106L_ASSERT, that disables 
the assertion.  If the user does not define NO_CS106L_ASSERT, we'll use #define to have the 
CS106LAssert macro perform the runtime checks.  Otherwise, we'll have the macro do nothing.  This is 
easily accomplished using #ifndef ... #else ... #endif to determine the behavior of CS106LAssert. 
This smart version of CS106LAssert is shown below:
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#ifndef NO_CS106L_ASSERT // Enable assertions

#include <cstdlib> // for abort();

/* Note that we define DoCS106LAssert inside this block, since if
 * the macro is disabled there's no reason to leave this function sitting
 * around.
 */
void DoCS106LAssert(bool invariant, string statement, string file, int line)
{
    if(!invariant)
    {
        cerr << "CS106LAssert Failed!" << endl;
        cerr << "Expression: " << statement << endl;
        cerr << "File:  " << file << endl;
        cerr << "Line: " << line << endl;
        abort(); // Quits program and signals error to the OS.
    }
}

#define CS106LAssert(expr) DoCS106LAssert(expr, #expr, __FILE__, __LINE__)

#else // Disable assertions

/* Define CS106LAssert as a macro that expands to nothing.  Now, if we call
 * CS106LAssert in our code, it has absolutely no effect.
 */
#define CS106LAssert(expr) /* nothing */

#endif

Practical Applications of the Preprocessor II: The X Macro Trick

That macros give C++ programs access to their own source code can be used in other ways as well.  One 
lesser-known programming technique is known as the X Macro trick, a way to specify data in one format 
but have it available in several formats.

Before exploring the X Macro trick, we need to cover how to redefine a macro after it has been declared. 
Just as you can define a macro by using #define, you can also undefine a macro using #undef.  The 
#undef preprocessor directive takes in a symbol that has been previously #defined and causes the 
preprocessor to ignore the earlier definition.  If the symbol was not already defined, the #undef directive 
has no effect but is not an error.  For example, consider the following code snippet:

#define MY_INT 137
int x = MY_INT;   // MY_INT is replaced
#undef MY_INT;
int MY_INT = 42;  // MY_INT not replaced

The preprocessor will rewrite this code as

int x = 137;
int MY_INT = 42;

Although MY_INT was once a #defined constant, after encountering the #undef statement, the 
preprocessor stopped treating it as such.  Thus, when encountering int MY_INT = 42, the preprocessor 
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made no replacements and the code compiled as written.

To introduce the X Macro trick, let's consider a common programming problem and see how we should 
go about solving it.  Suppose that we want to write a function that, given as an argument an enumerated 
type, returns the string representation of the enumerated value.  For example, given the enum

enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

We want to write a function called ColorToString that returns a string representation of the color.  For 
example, passing in the constant Red should hand back the string "Red", Blue should yield "Blue", etc. 
Since the names of enumerated types are lost during compilation, we would normally implement this 
function using code similar to the following:

string ColorToString(Color c)
{
    switch(c)
    {
        case Red: return "Red";
        case Blue: return "Blue";
        case Green: return "Green";
        case Cyan: return "Cyan";
        case Magenta: return "Magenta";
        case Yellow: return "Yellow";
        default: return "<unknown>";
    }
}

Now, suppose that we want to write a function that, given a color, returns the opposite color.*  We'd need 
another function, like this one:

Color GetOppositeColor(Color c)
{
    switch(c)
    {
        case Red: return Cyan;
        case Blue: return Yellow;
        case Green: return Magenta;
        case Cyan: return Red;
        case Magenta: return Green;
        case Yellow: return Blue;
        default: return c; // Unknown color, undefined result
    }
}

These two functions will work correctly, and there's nothing functionally wrong with them as written. 
The problem, though, is that these functions are not scalable.  If we want to introduce new colors, say, 
White and Black, we'd need to change both ColorToString and GetOppositeColor to incorporate 
these new colors.  If we accidentally forget to change one of the functions, the compiler will give no 
warning that something is missing and we will only notice problems during debugging.  The problem is 
that a color encapsulates more information than can be expressed in an enumerated type.  Colors also 
have names and opposites, but the C++ enum Color knows only a unique ID for each color and relies on 
correct implementations of ColorToString and GetOppositeColor for the other two.  Somehow, 

* For the purposes of this example, we'll work with additive colors.  Thus red is the opposite of cyan, yellow is the 
opposite of blue, etc.
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we'd like to be able to group all of this information into one place.  While we might be able to accomplish 
this using a set of C++ struct constants (e.g. defining a color struct and making const instances of 
these structs for each color), this approach can be bulky and tedious.  Instead, we'll choose a different 
approach by using X Macros.

The idea behind X Macros is that we can store all of the information needed above inside of calls to 
preprocessor macros.  In the case of a color, we need to store a color's name and opposite.  Thus, let's 
suppose that we have some macro called DEFINE_COLOR that takes in two parameters corresponding to 
the name and opposite color.  We next create a new file, which we'll call color.h, and fill it with calls to 
this DEFINE_COLOR macro that express all of the colors we know (let's ignore the fact that we haven't 
actually defined DEFINE_COLOR yet; we'll get there in a moment).  This file looks like this:

File: color.h
DEFINE_COLOR(Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE_COLOR(Green, Magenta)
DEFINE_COLOR(Magenta, Green)
DEFINE_COLOR(Blue, Yellow)
DEFINE_COLOR(Yellow, Blue)

Two things about this file should jump out at you.  First, we haven't surrounded the file in the traditional 
#ifndef ... #endif boilerplate, so clients can #include this file multiple times.  Second, we haven't 
provided an implementation for DEFINE_COLOR, so if a caller does include this file, it will cause a 
compile-time error.  For now, don't worry about these problems – you'll see why we've structured the file 
this way in a moment.

Let's see how we can use the X Macro trick to rewrite GetOppositeColor, which for convenience is 
reprinted below:

Color GetOppositeColor(Color c)
{
    switch(c)
    {
        case Red: return Cyan;
        case Blue: return Yellow;
        case Green: return Magenta;
        case Cyan: return Red;
        case Magenta: return Green;
        case Yellow: return Blue;
        default: return c; // Unknown color, undefined result
    }
}

Here, each one of the case labels in this switch statement is written as something of the form

case color: return opposite;

Looking back at our color.h file, notice that each DEFINE_COLOR macro has the form 
DEFINE_COLOR(color, opposite).  This suggests that we could somehow convert each of these 
DEFINE_COLOR statements into a case label by crafting the proper #define.  In our case, we'd want the 
#define to make the first parameter the argument of the case label and the second parameter the return 
value.  We can thus write this #define as
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#define DEFINE_COLOR(color, opposite) case color: return opposite;

Thus, we can rewrite GetOppositeColor using X Macros as

Color GetOppositeColor(Color c)
{
    switch(c)
    {
        #define DEFINE_COLOR(color, opposite) case color: return opposite;
        #include "color.h"
        #undef DEFINE_COLOR
        default: return c; // Unknown color, undefined result.
    }
}

This is pretty cryptic, so let's walk through it one step at a time.  First, let's simulate the preprocessor by 
replacing the line #include "color.h" with the full contents of color.h:

Color GetOppositeColor(Color c)
{
    switch(c)
    {
        #define DEFINE_COLOR(color, opposite) case color: return opposite;
        DEFINE_COLOR(Red, Cyan)
        DEFINE_COLOR(Cyan, Red)
        DEFINE_COLOR(Green, Magenta)
        DEFINE_COLOR(Magenta, Green)
        DEFINE_COLOR(Blue, Yellow)
        DEFINE_COLOR(Yellow, Blue)
        #undef DEFINE_COLOR
        default: return c; // Unknown color, undefined result.
    }
}

Now, we replace each DEFINE_COLOR by instantiating the macro, which yields the following:

Color GetOppositeColor(Color c)
{
    switch(c)
    {
        case Red: return Cyan;
        case Blue: return Yellow;
        case Green: return Magenta;
        case Cyan: return Red;
        case Magenta: return Green;
        case Yellow: return Blue;
        #undef DEFINE_COLOR
        default: return c; // Unknown color, undefined result.
    }
}

Finally, we #undef the DEFINE_COLOR macro, so that the next time we need to provide a definition for 
DEFINE_COLOR, we don't have to worry about conflicts with the existing declaration.  Thus, the final 
code for GetOppositeColor, after expanding out the macros, yields
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Color GetOppositeColor(Color c)
{
    switch(c)
    {
        case Red: return Cyan;
        case Blue: return Yellow;
        case Green: return Magenta;
        case Cyan: return Red;
        case Magenta: return Green;
        case Yellow: return Blue;
        default: return c; // Unknown color, undefined result.
    }
}

Which is exactly what we wanted.

The fundamental idea underlying the X Macros trick is that all of the information we can possibly need 
about a color is contained inside of the file color.h.  To make that information available to the outside 
world, we embed all of this information into calls to some macro whose name and parameters are known. 
We do not, however, provide an implementation of this macro inside of color.h because we cannot 
anticipate every possible use of the information contained in this file.  Instead, we expect that if another 
part of the code wants to use the information, it will provide its own implementation of the 
DEFINE_COLOR macro that extracts and formats the information.  The basic idiom for accessing the 
information from these macros looks like this:

#define macroname(arguments) /* some use for the arguments */
#include "filename"
#undef macroname

Here, the first line defines the mechanism we will use to extract the data from the macros.  The second 
includes the file containing the macros, which supplies the macro the data it needs to operate.  The final 
step clears the macro so that the information is available to other callers.  If you'll notice, the above 
technique for implementing GetOppositeColor follows this pattern precisely.

We can also use the above pattern to rewrite the ColorToString function.  Note that inside of 
ColorToString, while we can ignore the second parameter to DEFINE_COLOR, the macro we define to 
extract the information still needs to have two parameters.  To see how to implement ColorToString, 
let's first revisit our original implementation:

string ColorToString(Color c)
{
    switch(c)
    {
        case Red: return "Red";
        case Blue: return "Blue";
        case Green: return "Green";
        case Cyan: return "Cyan";
        case Magenta: return "Magenta";
        case Yellow: return "Yellow";
        default: return "<unknown>";
    }
}

If you'll notice, each of the case labels is written as
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case color: return "color";

Thus, using X Macros, we can write ColorToString as

string ColorToString(Color c)
{
    switch(c)
    {
        /* Convert something of the form DEFINE_COLOR(color, opposite)
         * into something of the form 'case color: return "color"';
         */
        #define DEFINE_COLOR(color, opposite) case color: return #color;
        #include "color.h"
        #undef DEFINE_COLOR

        default: return "<unknown>";
    }
}

In this particular implementation of DEFINE_COLOR, we use the stringizing operator to convert the 
color parameter into a string for the return value.  We've used the preprocessor to generate both 
GetOppositeColor and ColorToString!

There is one final step we need to take, and that's to rewrite the initial enum Color using the X Macro 
trick.  Otherwise, if we make any changes to color.h, perhaps renaming a color or introducing new 
colors, the enum will not reflect these changes and might result in compile-time errors.  Let's revisit 
enum Color, which is reprinted below:

enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

While in the previous examples of ColorToString and GetOppositeColor there was a reasonably 
obvious mapping between DEFINE_COLOR macros and case statements, it is less obvious how to 
generate this enum using the X Macro trick.  However, if we rewrite this enum as follows:

enum Color {
Red, 
Green, 
Blue, 
Cyan, 
Magenta, 
Yellow
};

It should be slightly easier to see how to write this enum in terms of X Macros.  For each DEFINE_COLOR 
macro we provide, we'll simply extract the first parameter (the color name) and append a comma.  In 
code, this looks like

enum Color {
    #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
    #include "color.h"
    #undef DEFINE_COLOR
};

This, in turn, expands out to 
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enum Color {
    #define DEFINE_COLOR(color, opposite) color,
    DEFINE_COLOR(Red, Cyan)
    DEFINE_COLOR(Cyan, Red)
    DEFINE_COLOR(Green, Magenta)
    DEFINE_COLOR(Magenta, Green)
    DEFINE_COLOR(Blue, Yellow)
    DEFINE_COLOR(Yellow, Blue)
    #undef DEFINE_COLOR
};

Which in turn becomes

enum Color {
Red, 
Green, 
Blue, 
Cyan, 
Magenta, 
Yellow,
};

Which is exactly what we want.  You may have noticed that there is a trailing comma at after the final 
color (Yellow), but this is not a problem – it turns out that it's totally legal C++ code.

Analysis of the X Macro Trick

The X Macro-generated functions have several advantages over the hand-written versions.  First, it makes 
the code considerably shorter.  By relying on the preprocessor to perform the necessary expansions, we 
can express all of the necessary information for an object inside of an X Macro file and only need to write 
the syntax necessary to perform some task once.  Second, and more importantly, this approach means that 
adding or removing Color values is simple.  We simply need to add another DEFINE_COLOR definition 
to color.h and the changes will automatically appear in all of the relevant functions.  Finally, if we need 
to incorporate more information into the Color object, we can store that information in one location and 
let any callers that need it access it without accidentally leaving one out.

That said, X Macros are not a perfect technique.  The syntax is considerably trickier and denser than in 
the original implementation, and it's less clear to an outside reader how the code works.  Remember that 
readable code is just as important as correct code, and make sure that you've considered all of your 
options before settling on X Macros.  If you're ever working in a group and plan on using the X Macro 
trick, be sure that your other group members are up to speed on the technique and get their approval 
before using it.*

* The X Macro trick is a special case of a more general technique known as preprocessor metaprogramming.  If 
you're interested in learning more about preprocessor metaprogramming, consider looking into the Boost 
Metaprogramming Library (MPL), a professional C++ package that simplifies common metaprogramming tasks.
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More to Explore / Practice Problems

I've combined the “More to Explore” and “Practice Problems” section of this handout because many of 
the topics we didn't cover in great detail in this handout are best understood by playing around with the 
material.  Here's a sampling of different preprocessor tricks and techniques, mixed in with some 
programming puzzles:

 1. A common but nonstandard variant of the assert macro is the verify macro which, like 
assert, checks a condition at runtime and prints and error and terminates if the condition is 
false.  However, in optimized builds, verify is not disabled, but simply does not abort at 
runtime if the condition is false.  This allows you to use verify to check the return value of 
functions directly (Do you see why?).  Create a function called CS106LVerify that, unless the 
symbol NO_CS106L_VERIFY is defined, checks the parameter and aborts the program if it is 
false.  Otherwise, if NO_CS106L_VERIFY is defined, check the condition, but do not terminate 
the program if it is false.

 2. Another common debugging macro is a “not reached” macro which automatically terminates the 
program if executed.  “Not reached” macros are useful inside constructs such as switch 
statements where the default label should never be encountered.  Write a macro, 
CS106LNotReached, that takes in a string parameter and, if executed, prints out the string, file 
name, and line number, then calls abort to end the program.  As with CS106LAssert and 
CS106LVerify, if the user #defines the symbol NO_CS106L_NOTREACHED, change the 
behavior of CS106LNotReached so that it has no effect.

 3. If you've done the two previous problems, you'll notice that we now have three constants, 
NO_CS106L_ASSERT, NO_CS106L_VERIFY, and NO_CS106L_NOTREACHED, that all must be 
#defined to disable them at runtime.  This can be a hassle and could potentially be incorrect if 
we accidentally omit one of these symbols.  Write a code snippet that checks to see if a symbol 
named DISABLE_ALL_CS106L_DEBUG is defined and, if so, disables all of the three 
aforementioned debugging tools.  However, still give the user the option to selectively disable the 
individual functions.

 4. Modify the earlier definition of enum Color such that after all of the colors defined in color.h, 
there is a special value, NOT_A_COLOR, that specifies a nonexistent color. (Hint: Do you actually  
need to change color.h to do this?)

 5. Using X Macros, write a function StringToColor which takes as a parameter a string and 
returns the Color object whose name exactly matches the input string.  If there are no colors with 
that name, return NOT_A_COLOR as a sentinel.  For example, calling 
StringToColor("Green") would return the value Green, but calling 
StringToColor("green") or StringToColor("Olive") should both return 
NOT_A_COLOR.

 6. Suppose that you want to make sure that the enumerated values you've made for Color do not 
conflict with other enumerated types that might be introduced into your program.  Modify the 
earlier definition of DEFINE_COLOR used to define enum Color so that all of the colors are 
prefaced with the identifier eColor_.  For example, the old value Red should change to 
eColor_Red, the old Blue would be eColor_Blue, etc.  Do not change the contents of 
color.h. (Hint: Use one of the preprocessor string-manipulation operators)
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 7. The #error directive causes a compile-time error if the preprocessor encounters it.  This may 
sound strange at first, but is an excellent way for detecting problems during preprocessing that 
might snowball into larger problems later in the code.  For example, if the code uses compiler-
specific features (such as the OpenMP library), it might add a check to see that a compiler-
specific #define is in place, using #error to report an error if it isn't.  The syntax for #error 
is #error message, where message is a message to the user explaining the problem.  Modify 
color.h so that if a caller #includes the file without first #define-ing the DEFINE_COLOR 
macro, the preprocessor reports an error containing a message about how to use the file.

 8. If you're up for a challenge, consider the following problem.  Below is a table summarizing 
various units of length:

Unit Name #meters / unit Suffix System
Meter 1.0 m Metric

Centimeter 0.01 cm Metric

Kilometer 1000.0 km Metric

Foot 0.3048 ft English

Inch 0.0254 in English

Mile 1609.344 mi English

Astronomical Unit 1.496 x 1011 AU Astronomical

Light Year 9.461 × 1015 ly Astronomical

Cubit* 0.55 cubit Archaic

 a) Create a file called units.h that uses the X macros trick to encode the above information.
 b) Create an enumerated type, LengthUnit, which uses the suffix of the unit, preceded by 

eLengthUnit_, as the name for the unit.  For example, a cubit is eLengthUnit_cubit, 
while a mile would be eLengthUnit_mi.  Also define an enumerated value 
eLengthUnit_ERROR that serves as a sentinel indicating that the value is invalid.

 c) Write a function called SuffixStringToLengthUnit that accepts a string representation 
of a suffix and returns the LengthUnit corresponding to that string.  If the string does not 
match the suffix, return eLengthUnit_ERROR.

 d) Create a struct, Length, that stores a double and a LengthUnit.  Write a function 
ReadLength that prompts the user for a double and a string representing an amount and 
a unit suffix and stores data in a Length.  If the string does not correspond to a suffix, 
reprompt the user.  You can modify the code for GetInteger on the CS106L website to 
make an implementation of GetReal.

 e) Create a function, GetUnitType, that takes in a Length and returns the unit system in 
which it occurs (as a string)

 f) Create a function, PrintLength, that prints out a Length in the format 
amount suffix (amount unitnames).  For example, if a Length stores 104.2 miles, it 
would print out 104.2mi (104.2 Miles)

 g) Create a function, ConvertToMeters, which takes in a Length and converts it to an 
equivalent length in meters.

Surprisingly, this problem is not particularly long – the main challenge is the user input, not the 
unit management!

* There is no agreed-upon standard for this unit, so this is an approximate average of the various lengths.
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