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Introduction

A matrix is a two-dimensional array of numbers.  For example, here is a 4 x 5 matrix:

A=3 1 4 2 7
1 5 9 1 8
2 6 5 2 8
3 5 8 1 8

Notice that a 4 x 5 matrix has four rows and five columns.

Given a matrix A, we use the notation Aij to denote the element in row i, column j of that matrix.  Conven-
tions vary on whether matrix elements are zero- or one-indexed, but since we're C++ programmers we'll 
assume that the entries are zero-indexed.  This means that if A is the above matrix, A00 = 3, A12 = 9, and 
A21 = 6.

Matrices are used in all fields of computer science and applied mathematics, including graphics, machine 
learning, program analysis, and physics simulations.  Matrices are useful for a variety of reasons, one of 
which is that they provide a compact syntax for manipulating large quantities of numbers.  For instance, 
we can add two matrices of the same dimensions by summing their components.  Thus if

A=3 1 4 2 7
1 5 9 1 8
2 6 5 2 8
3 5 8 1 8; B=9 7 9 4 5

3 2 3 9 0
8 4 6 4 5
2 6 4 2 3

Then

AB=12 8 13 6 12
4 7 12 10 8
10 10 11 6 13
5 11 12 3 11

Suppose that we want to design a C++ class that encapsulates a matrix, which we'll call  Matrix.  One 
simple method for implementing Matrix would be to back the Matrix with a two-dimensional array.  If 
we use the  grid class from Chapter 25 of the course reader, we could implement  Matrix as follows: 
(You might want to read over the interface for grid before proceeding)
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class Matrix
{
public:
    /* Constructor creates a matrix of a specific size that's all zeros. */
    Matrix(size_t rows, size_t cols) : elems(rows, cols) {}
    /* Read and write values in the matrix. */
    double getAt(size_t row, size_t col) const
    {
        return elems[row][col];
    }
    void setAt(size_t row, size_t col, double value)
    {
        elems[row][col] = value;
    }
    /* Query the size of the matrix. */
    size_t numRows() const { return elems.numRows(); }
    size_t numCols() const { return elems.numCols(); }
private:
    /* Layer the matrix on top of a grid. */
    grid<double> elems;
};

Now that we have a basic implementation of the Matrix, let's see how we might implement matrix addi-
tion.  We'll define a version of operator+ that takes in two matrices and returns their sum.  One imple-
mentation is as follows:

const Matrix operator+ (const Matrix& one, const Matrix& two)
{
    /* ... check that dimensions agree ... */

    Matrix result(one.numRows(), one.numCols();
    for(size_t row = 0; row < one.numRows(); ++row)
        for(size_t col = 0; col < one.numCols(); ++col)
            result.setAt(row, col, one.getAt(row, col) + two.getAt(row, col));
    return result;
}

This function constructs a new matrix of the same dimensions as the original matrices, then sets each ele-
ment in the resulting matrix to be the sum of the elements from the two input matrices.  We could simil-
arly define operator- to subtract two matrices and operator*  to multiply a matrix and a scalar (this 
multiplies every element in the matrix by the scalar).  With these operators in tow, we can write expres-
sions like the following:

/* Create four matrices – A, B, C, and D – of the same size. */
Matrix A = /* ... */, B = /* ... */, C = /* ... */, D = /* ... */;

/* Create a new matrix from them. */
Matrix E = 2*A – 4*B + C + D;

Through the magic of operator overloading, this will set E to be a matrix where Eij = 2Aij – 4Bij + Cij + Dij. 
But exactly how efficient it is to construct this matrix E?  Recall that C++ will interpret the above state-
ment as
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Matrix E = 
 operator+ (operator+ (operator- (operator* (2, A), operator* (4, B)), C), D);

This code contains five calls to overloaded operators.  If the matrices are of dimension m x n, then each 
operator takes O(mn) time, since the implementation has to iterate over every element of each input mat-
rix at least once.  Since the number of calls is constant, this code runs in O(mn).

However, suppose that we only need to look at the first column of the matrix E.  In that case, we don't ac-
tually need to compute every entry of E, just the entries in the first column.  We can compute these values 
in O(m) time, which is much faster than computing the full sum and then looking at just the first column. 
This generalizes to a more important result – if only need to look at k elements of the sum, we can do so 
in O(k) time by just computing the sum of the elements in those positions.

The problem is that at the time that we compute the matrix E, we have no idea what operations we're go-
ing to perform on it.  We might look at every element of E, in which case O(mn) is as good as we can do. 
Then again, we might look at only k elements, in which case we shouldn't do the full computation.  Un-
fortunately, in general it's impossible to figure out what might be done with  E later in the program, so 
we're forced to compute the value of every element of E when constructing it.

Or are we?

An Alternative Implementation

There is a fantastically clever trick that will allow us to get the best of both worlds – creating a matrix that 
is the sum of two other matrices, but only computing the elements of the resulting matrix that we actually 
use.  The trick is to change the underlying representation of Matrix.  Instead of implementing Matrix as 
an actual matrix, we can implement Matrix as an expression tree for a matrix.  To understand how this 
works, suppose that we are given two matrices A and B of equal dimensions.  Then instead of storing the 
actual matrices  A and  B inside of  the objects  A and  B,  we will  have  A and  B store  pointers to those 
matrices, as shown here:

A B

Now suppose that we write the following code:

Matrix C = A + B;

Instead of creating a new matrix and populating it with the values of A + B, we create an expression tree 
for A + B and then set the matrix C so that it points at the expression tree.  This is shown here:

- 3 -



A B

+

C

Here, + is an expression tree node that represents the sum of two other matrix expressions. The matrix C 
is then implemented as a pointer to this node.  Whenever we read an element out of C, the result is dy-
namically computed from the expression tree.  For example, suppose we want to read the element at posi-
tion (2, 3) of C.  C queries the + node for the value at position (2, 3).  This + node in turn queries the con-
crete matrices pointed at by  A and  B for their values at position (2, 3), then returns the sum.  In other 
words, C behaves as if it is the sum of A and B, since any time we look up an element of C it has the value 
of the corresponding element of A + B.  But C isn't the sum of A and B – it's just an expression tree that 
evaluates to the sum – and so we don't have to compute the full matrix when creating C.  In other words, 
we're taking the idea of separation of interface from implementation and running wild with it.  From a cli-
ent's perspective, we're adding, subtracting, and multiplying matrices.  In reality, we're being lazy and 
only computing matrix entries when the user wants them.

To see this setup in action, let's return to our original motivating example:

/* Create four matrices – A, B, C, and D – of the same size. */
Matrix A = /* ... */, B = /* ... */, C = /* ... */, D = /* ... */;

/* Create a new matrix from them. */
Matrix E = 2*A – 4*B + C + D;

If we represent matrices using expression trees, the resulting of this operation is as follows:
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Notice that the matrices A, B, C, and D are represented as pointers to “clouds” instead of pointers to con-
crete matrices.  This is because A, B, C, and D are themselves implemented as matrix expression trees, so 
it's unclear whether they point directly to concrete matrices or whether they point to more complicated ex-
pressions.  The clouds in this diagram thus signify “some expression tree.”

The expression trees for A, B, C, and D are joined together by a combination of + and – nodes, along with 
two × nodes which represent the product of a matrix by a scalar.  If you work out the expression pointed 
at by E from top to bottom, you'll notice that E = ((2*A – 4*B) + C) + D, which is exactly the ex-
pression we want.

Of course, this solution does not magically make matrix math faster.  Because we compute matrix ele-
ments using an expression tree, if we read the same matrix elements over and over again, we will reevalu-
ate the expression for those elements multiple times.  Similarly, if we do read every element out of the 
matrix, this approach will be slower than if we had eagerly computed every value because of the overhead 
from the expression tree.  Overall, though, this is a very promising implementation strategy.  The next 
question, of course, is exactly how this translates into actual C++ code.

Implementing the Approach

Implementing Matrix using expression trees may at first seem a difficult task, but it turns out to be sur-
prisingly simple.  We'll break the problem down into two subproblems:

1. Designing and implementing the expression tree hierarchy.
2. Designing and implementing the Matrix class.

We'll begin by discussing what an expression tree of matrices looks like.  As you've seen in CS106B/X, 
an expression tree is a tree composed of polymorphic expression classes that each know how to evaluate 
to a value.  In our case, we represent matrix expression trees with a base class called MatrixExpr, which 
is defined as follows:
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class MatrixExpr
{
public:
    virtual ~MatrixExpr() {} // Polymorphic classes need virtual destructors

    /* Return the number of rows and columns in the matrix. */
    virtual size_t numRows() const = 0;
    virtual size_t numCols() const = 0;
    /* Returns the value of the element at a given position. */
    virtual double getAt(size_t row, size_t col) const = 0;
};

The MatrixExpr class contains three member functions: numRows and numCols, which return the num-
ber of rows or columns in the matrix, respectively; and getAt, which takes in an index and returns the 
element at that position.

When  working  with  expression  trees  in  CS106B/X,  one  of  the  simplest  expression  classes  you  en-
countered was ConstantExp, which represents an integer literal.  In our case, a “constant expression” is 
a matrix literal.  We'll call this class ConcreteMatrix to indicate that it actually represents a matrix, and 
can implement it as follows:

class ConcreteMatrix: public MatrixExpr
{
public:
    /* Constructor creates a matrix of a specific size that's all zeros. */
    ConcreteMatrix(size_t rows, size_t cols) : elems(rows, cols) {}
    /* Read and write values in the matrix. */
    double getAt(size_t row, size_t col) const { return elems[row][col]; }
    /* Query the size of the matrix. */
    size_t numRows() const { return elems.numRows(); }
    size_t numCols() const { return elems.numCols(); }
private:
    /* Layer the matrix on top of a grid. */
    grid<double> elems;
};

If you'll notice, this implementation is almost the same as our initial implementation of Matrix.  This is 
no coincidence – in fact, we would expect this to be the case because at some point our matrix expression 
tree has to bottom out in an actual matrix!

Now that we have an expression class corresponding to a concrete matrix, we can consider defining an 
expression class that represents the sum of two matrices.  We'll call this class SumExpr and can define it 
as follows:*

* An alternative approach would be to implement a generic CompoundExpr class as suggested in the CS106B/X 
course reader.  If you find this approach more intuitive, by all means feel free to implement sums and differences 
of matrices this way.
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/* NOTE: When we talk about resource management later in this handout, we
 * will need to revise the definition of this class.  Do not directly use this
 * code in your solution!
 */
class SumExpr: public MatrixExpr
{
public:
    /* Construct the sum of two matrices from two matrix expressions.  We
     * will assume that the dimensions of the matrices agree.
     */
    SumExpr(MatrixExpr* left, MatrixExpr* right) : lhs(left), rhs(right) {}
    /* Destructor cleans up resources. */
    ~SumExpr()
    {
        delete lhs;
        delete rhs;
    }

    /* Return the number of rows / columns in the matrix, which are equal to
     * the number of rows and columns in either of the child matrices.
     */
    size_t numRows() const { return lhs->numRows(); }
    size_t numCols() const { return lhs->numCols(); }
    /* The element at position (row, col) is given as the sum of the elements
     * at position (row, col) in the two child matrices.
     */
    double getAt(size_t row, size_t col) const
    {
        return lhs->getAt(row, col) + rhs->getAt(row, col);
    }
private:
   MatrixExpr* lhs, *rhs;
};

The SumExpr constructor takes in two MatrixExpr*s, one for the left-hand side and one for the right. 
Looking up the  number  of  rows or columns  in  the expression simply yields  the  number  of  rows or 
columns in either child expression (this implementation arbitrarily uses the left child).  The implementa-
tion of getAt looks up the elements in the proper position in the left and right child expressions, then re-
turns their sum.

Of course, there are many more expression classes we could create – you'll be implementing some of 
them in the course of this assignment – but hopefully these two examples give you a better feel for what 
they look like.

An interesting point about the expression tree we're building is that, unlike the expression trees you've 
seen in CS106B/X, we don't need to write our own code for parsing expressions and determining order of 
operations.  Because we're constructing the expression tree using overloaded operators,  C++ will auto-
matically parse the expression for us.  Recall that in our example with the matrix E, the declaration

Matrix E = 2*A – 4*B + C + D;

is equivalent to
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Matrix E = operator+
               (operator+
                    (operator-
                          (operator*(2, A), 
                           operator*(4, B)),
                     C),
                D);

If each of these overloaded operators generates a Matrix whose expression tree applies the appropriate 
operator to its arguments, then these function calls will construct the correct expression tree.

Now that we've seen how we can represent expression trees, let's see how we might implement Matrix. 
Matrix is little more than a wrapper around the expression tree.  Here's one possible implementation:

class Matrix
{
public:
    /* Constructor creates a matrix of a specific size. */
    Matrix(size_t rows, size_t cols);

    /* Destructor and copy functions are covered in the next section. */

    /* Element access and size queries. */
    double getAt(size_t row, size_t col) const
    {
        return expr->getAt(row, col);
    }
   
    /* setAt covered in a later section. */

    size_t numRows() const { return expr->numRows(); }
    size_t numCols() const { return expr->numCols(); }
    /* operator+ joins two matrices using a SumExpr. */
    friend const Matrix operator+ (const Matrix& one, const Matrix& two);
private:
    /* This private constructor is used to construct a Matrix from an 
     * expression tree.
     */
    explicit Matrix(MatrixExpr* exprTree) : expr(exprTree) {}
    /* The expression tree for this Matrix */
    MatrixExpr* expr;
};

/* The Matrix constructor initializes the Matrix to a ConcreteMatrix of the
 * proper size.
 */
Matrix::Matrix(size_t rows, size_t cols): expr(new ConcreteMatrix(rows, cols))
{
}
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/* The + operator on two matrices computes the sum by joining the two
 * matrices together via a SumExpr.
 */
const Matrix operator+ (const Matrix& one, const Matrix& two)
{
    /* ... some check that the dimensions agree ... */

    /* Because we're a friend of Matrix, we can look inside the Matrix to see
     * its expression tree and the private constructor.
     */
    return Matrix(new SumExpr(one.expr, two.expr));
}

Notice that we've made operator+ a friend of Matrix, since the implementation of operator+ now 
need access to the expr data member.

While the implementation of Matrix is for the most part straightforward, there are two subtle details that 
we need to address: resource management and mutating operations.

Tricky Aspect 1: Resource Management

Because Matrix is now implemented as a pointer to a dynamically-allocated expression tree, we need to 
ensure that the tree is deallocated at some point.  This ends up being a bit trickier than you might expect. 
For example, consider the following code:

Matrix DoSomething()
{
    Matrix a = /* ... create some 10 x 10 matrix ... */
    Matrix b = /* ... create some 10 x 10 matrix ... */
    Matrix c = /* ... create some 10 x 10 matrix ... */

    return a + b;
}

This function creates three local  Matrix objects, then returns the sum of  a and  b.  In memory,  at the 
point where the matrix a + b is returned, memory looks like this:

a

b

c

+return 
value

When a and b go out of scope as the function returns, they should not deallocate their expression trees be-
cause those trees are referenced (albeit indirectly) by the return value.  On the other hand, when c leaves 
scope,  c should deallocate the memory for its expression tree because no other matrices reference that 
tree.  How can we differentiate between these two cases?
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Fortunately, resource management is simple thanks to the  SharedPtr class we covered in lecture.  If 
you'll recall, SharedPtr is designed to handle resource management exactly along the lines of what's de-
scribed above.  SharedPtrs hold a reference to a resource and track the number of other SharedPtrs 
that also refer to that resource.  Whenever SharedPtr is destroyed, if it is the last SharedPtr to its re-
source, it deallocates the resource; otherwise nothing happens.  Using this fact, we can replace all in-
stances of MatrixExpr* with instances of SharedPtr<MatrixExpr>.  This automates reference man-
agement and ensures that resources are cleaned up only when they are no longer used.  For example, we 
might rewrite the Matrix class to use SharedPtr as follows:

class Matrix
{
public:
    /* Constructor creates a matrix of a specific size. */
    Matrix(size_t rows, size_t cols);

    /* No destructor or copy functions – SharedPtr does this for us. */
    /* Element access and size queries. */
    double getAt(size_t row, size_t col) const;
    size_t numRows() const;
    size_t numCols() const;

    /* setAt covered in a later section. */

    /* operator+ joins two matrices using a SumExpr. */
    friend const Matrix operator+ (const Matrix& one, const Matrix& two);

private:
    /* Construct a Matrix from an expression tree. */
    explicit Matrix(SharedPtr<MatrixExpr> exprTree);
    SharedPtr<MatrixExpr> expr;
};

We have to be careful to use SharedPtr consistently throughout our implementation, since if we use a 
raw pointer to refer to a MatrixExpr the SharedPtrs won't know about that reference and might acci-
dentally clean up an expression tree that's still in use.  Consequently, we'll need to change our implement-
ation of SumExpr to use SharedPtr as well.  This is shown here:
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class SumExpr: public MatrixExpr
{
public:
    SumExpr(SharedPtr<MatrixExpr> left, SharedPtr<MatrixExpr> right) 
      : lhs(left), rhs(right) {}
    /* No destructor needed. */

    size_t numRows() const { return lhs->numRows(); }
    size_t numCols() const { return lhs->numCols(); }

    double getAt(size_t row, size_t col) const
    {
        return lhs->getAt(row, col) + rhs->getAt(row, col);
    }
private:
    SharedPtr<MatrixExpr> lhs, rhs;
};

As you implement other expression classes, make sure to use SharedPtrs instead of raw pointers.

Tricky Aspect 2: Copy on Write

There is one more tricky aspect to the Matrix implementation: if elements are computed via an expres-
sion tree, how do we support a function like setAt that lets us overwrite a single matrix element?  Con-
sider the following example:

Matrix a = /* ... some matrix ... */;
Matrix b = a;
a = a + a;

In memory, this is represented as follows:

b+a

(Make sure you understand why this looks the way it does before proceeding!  Try tracing out each step 
individually to see what's happening.)

Suppose we now write the following:

b.setAt(0, 0, 137);

This change means that we need to change the b matrix so that the element at position (0, 0) is equal to 
137.  This poses two challenges:
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1. The elements of b are stored as an expression tree and computed dynamically, meaning that there 
might not be a concrete matrix we can modify to change the value at position (0, 0) to 137.

2. The matrix  a indirectly references the same matrix as b, so changes we make to b's expression 
tree might alter a.

Problem (1) above stems from the fact that b isn't actually represented as a concrete matrix, and problem 
(2) stems from the fact that b shares its matrix with a.  We can solve both of these problems at once using 
the following strategy: whenever we overwrite a matrix element in some matrix A, we create a new Con-
creteMatrix, fill it in with the values of the A, then set A to use this ConcreteMatrix as its expression 
tree.  We then overwrite the specified element with the client's value.  This addresses the above problems 
as follows:

1. Because we change A's expression tree into a ConcreteMatrix, we can easily set an element of 
A to a value by overwriting the matching element of the ConcreteMatrix.

2. Because the ConcreteMatrix we create for  A is not shared with any other Matrix instances, 
updates to A's expression tree do not change the values of any other matrices.

To get a better sense of how this works in practice, let's trace through what happens in the above situation. 
To set element (0, 0) of b to 137, we first flatten b's tree into a ConcreteMatrix and change b so that it 
uses this matrix as its expression tree.  This is shown here:

b

+a

Notice that b points to its own concrete matrix, but a still uses the old expression tree.  Now that b's ele-
ments are stored in a concrete matrix, we can safely overwrite the value at position (0, 0) with 137.

This strategy works, but is costly; overwriting a single element of a matrix causes the entire matrix to be 
evaluated.  However, we can apply an optimization to reduce the overhead.  Suppose that we have just ex-
ecuted the above statement, causing b to refer to its own ConcreteMatrix.  What happens if we over-
write another value in b's matrix?  Since b now points to a ConcreteMatrix which no other Matrix 
objects reference, we can simply go in and change the underlying  ConcreteMatrix without worrying 
that the write will affect another  Matrix.  This is essentially a souped-up version of the  copy-on-write 
optimization we talked about briefly at the end of Thursday's lecture.

To summarize, the general pattern for writing elements into a Matrix is as follows:
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If either:
• The matrix does not point at a ConcreteMatrix expression.
• The matrix is not the only matrix pointing at its expression.

Then:
1. Create a new ConcreteMatrix expression of the same dimensions as the matrix.
2. Set each element of the ConcreteMatrix class to the values of the source matrix by evaluating 

the expression tree at each point.
Finally, overwrite the matrix element with the client's value.

The Assignment

This lengthy introduction hopefully has given you a good sense for how to implement a Matrix class us-
ing expression trees.  Your assignment is to build off of the techniques covered in this handout to imple-
ment Matrix, along with some additional extensions.  Don't worry – you'll be provided a fair amount of 
starter code to work with, and we've just covered the two most challenging implementation details.

To help you work through the code  Matrix class, I've broken down the assignment into four smaller 
pieces.  You'll be provided testing code to help check that each of the steps works correctly, so hopefully 
each step will be self-contained.

Task 0: Familiarize yourself with the starter code.

There are several starter files for this assignment containing a lot of prewritten code.  Specifically, the 
starter code contains:

• An interface for MatrixExpr.
• A partial implementation of Matrix.
• A partial implementation of ConcreteMatrix.
• A complete implementation of SumExpr.
• An implementation of SharedPtr and grid.
• Testing code.

Before you start hacking away at the code base, take some time to read over the starter files and the com-
ments to get a feeling for how they work and what functions are at your disposal.  If you have any ques-
tions about how the code works, let me know and I'll be glad to clarify.

Task 1: Implement setAt

Your first task is to implement the Matrix's setAt function, which has the following signature:

void setAt(size_t row, size_t col, double value);

setAt should set the element at position (row, col) to value using the algorithm mentioned above.  To 
do this, you'll need to be able to determine whether the expression pointed at by a  Matrix is a  Con-
creteMatrix.  There are many techniques you can use to implement this check, of which two stand out 
as strong candidates:
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• dynamic_cast.  As mentioned in lecture, the dynamic_cast operator performs a typecast from 
one type to another, handing back a null pointer if the cast fails.  This can be used to check if a 
pointer of type MatrixExpr* is pointing at a ConcreteMatrix; if the result of dynamic_cast-
ing the pointer to a ConcreteMatrix* is non-null, the pointer points to a ConcreteMatrix.

Unfortunately,  there's  a  catch  –  dynamic_cast can  only  be  applied  to  raw  pointers,  not 
SharedPtrs.  Mixing raw pointers and SharedPtrs can be tricky, and to make life simpler I've 
provided a function called  dynamic_pointer_cast that behaves like  dynamic_cast except 
that it works on SharedPtrs.  For example:

SharedPtr<ConcreteMatrix> ptr = dynamic_pointer_cast<ConcreteMatrix>(m);
if(ptr == NULL)
{
    /* ... m doesn't point at a ConcreteMatrix ... */
}
 
There is also a static_pointer_cast operator that mimics static_cast and can be used to 
perform unchecked typecasts on SharedPtrs.

• typeid.  typeid  is an operator that takes in a type or expression and returns an object of type 
type_info containing information about the argument's type.  You can use typeid as follows 
to check whether the expression tree referenced by a Matrix is a ConcreteMatrix:
 
if(typeid(*m) != typeid(ConcreteMatrix))
{
    /* ... m doesn't point at a ConcreteMatrix ... */
}
 
Once you know that the SharedPtr points to a ConcreteMatrix, you can downcast the pointer 
using static_pointer_cast, as mentioned above.  To use  typeid, you will need to  #in-
clude <typeinfo> at the top of your code.
 
If you do use typeid to determine what type of object is referred to by a pointer, make sure that 
you pass the  pointee rather than the  pointer into  typeid.  Otherwise you'll end up getting the 
static type of the pointer rather than the dynamic type of the pointee.  For example, the following 
code is legal but doesn't work correctly:
 
if(typeid(m) != typeid(ConcreteMatrix)) // Always true
{
    /* ... m doesn't point at a ConcreteMatrix ... */
}

When you think that you have a working implementation, be sure to run the tests in test-harness.cpp 
before proceeding.  This will help double-check that your implementation works correctly.

Task 2: Implement the remaining mathematical operators

The version of Matrix provided in the starter code only supports operator+, but there are several other 
matrix operations that you may also want to perform.  For example, you can subtract two matrices by per-
forming a componentwise subtraction, and can multiply a matrix by a real number by scaling all of the 
elements of the matrix by that real number.

Your next task is to implement the following functions on the Matrix class:
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class Matrix
{
public:
    /* ... as before ... */

    /**
     * Given two matrices of the same dimension, returns a new matrix of
     * the same dimension whose elements are equal to the componentwise
     * difference of the elements in the first matrix and the second.
     */
    friend const Matrix operator- (const Matrix& one, const Matrix& two);
    /**
     * Given a matrix and a scalar, returns a new matrix whose elements are
     * equal to the elements of the source matrix multiplied by the scalar.
     * Note that there are two versions of this function so that both
     * myMatrix * myScalar and myScalar * myMatrix are legal.
     */
    friend const Matrix operator* (const Matrix& m, double scalar);
    friend const Matrix operator* (double scalar, const Matrix& m);
    /**
     * Given a matrix and a scalar, returns a new matrix whose elements are
     * equal to the elements of the source matrix divided by the scalar.
     * Unlike multiplication, this operation is only defined for the
     * syntax myMatrix / myScalar, since the reverse (myScalar / myMatrix)
     * is not mathematically well-defined.
     */
    friend const Matrix operator/ (const Matrix& m, double scalar);
    /**
     * Returns a matrix equal to the input matrix except that the sign of
     * every element has been inverted.  For example, given the matrix
     *
     *     | 1 2 |
     * m = | 3 4 |
     *
     *                    |-1 -2|
     * The value of -m is |-3 -4|
     */
    friend const Matrix operator- (const Matrix& m);
};

As with operator+, these functions should not deep-copy the matrix, but should instead return matrices 
that use expression trees to compute their values.  You will need to implement at least one new subclass 
of MatrixExpr to make this code work correctly.  As a major time-saving tip, you can use the following 
identities to implement some of these functions in terms of one another:

A – B = A + (-B) 
A * k = k * A    
A / k = A * (1/k)
    -A = -1 * A    

You can test your functions using test-harness.cpp; see the file comments for more information.
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Task 3: Implement extensions

At this  point,  you  have developed a  working  Matrix class  that  uses  expression trees  to  reduce the 
amount of computation needed for common matrix operations.  However, this class is far from complete 
and there are several interesting extensions that you can build on top of Matrix.  Rather than dictating 
what other features you might want to add on top of Matrix, I'm leaving this up to you.  Implement at  
least one interesting extension to the Matrix class.  My definition of “interesting” is fairly flexible – it 
might be a feature might be one that makes you go “Wow!  That's really cool!” or it might be a program-
ming  task  that  teaches  you  something  new about  what's  possible  using  C++.   You  can  implement 
whatever extensions you'd like, but if you'd like some suggestions, you might want to try out some of 
these ideas:

• Matrix multiplication.  One major operation on matrices that we did not implement in this as-
signment is matrix multiplication.  Given two matrices A and B of dimension m x n and n x p, re-
spectively, the product AB is defined as the m x p matrix such that 
 

ABij=∑
k=1

n

Aik Bkj

 
Matrix multiplication is a particularly expensive operation – without very clever optimizations, 
multiplying an m x n matrix and an n x p matrix takes O(mnp) time.  Implement operator* on 
two Matrix objects to lazily compute the product of the two matrices (that is, the result is an ex-
pression tree for the product).

• Matrix transpose. Given an m x n matrix A, the transpose of A, denoted AT, is the n x m matrix 
such that  AT

ij =  Aji.   That is,  the transpose of  A is the matrix  A with the rows and columns 
swapped.  Using expression trees, it's extremely easy to compute a matrix transpose – just create 
a MatrixExpr class whose getAt function flips the order of the parameters and invokes getAt 
on a stored MatrixExpr.  Write a function Transpose that computes the transpose of a matrix.

• Matrix tiling. Given an m x n matrix A, a matrix tiling of A is a matrix formed by tiling A hori-

zontally and vertically some number of times.  For example, if  A is the matrix  1 2
3 4 , then 

tiling A thrice horizontally and twice vertically yields
 

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4  

 
Using expression trees, we can construct a matrix tiling by simply storing the matrix we want to 
tile and then using modular arithmetic to map each point in the tiling back into the original mat-
rix.  This makes it possible to talk about arbitrarily large matrix tilings without actually having to 
represent the tiling in memory – we just store the matrix being tiled and compute the elements of 
the tiling dynamically.  Write a function TileMatrix that takes in a matrix and a number of re-
peats in each direction, then returns a matrix equal to the input matrix tiled that many times.
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• Diagonal matrices.  A diagonal matrix is a (usually square) matrix that is zero everywhere ex-
cept on the main diagonal.  For example, the following matrix is diagonal:
 


1 0 0 0 0 0
0 4 0 0 0 0
0 0 1 0 0 0
0 0 0 4 0 0
0 0 0 0 2 0
0 0 0 0 0 1


 

 
Given a diagonal matrix of dimension  n x  n, we can store the diagonal matrix naïvely in O(n2) 
space by encoding the entire matrix.  A much more efficient way of storing a diagonal matrix us-
ing only O(n) space is to store just the elements on the diagonal.  If we then look up an element in 
the matrix, the value is 0 if it is off of the diagonal and otherwise equal to the element on the di-
agonal in the given position.  A special case of a diagonal matrix is the identity matrix, which is a 
diagonal matrix whose diagonal entries are all ones.  Provide the user some means for creating di-
agonal and identity matrices.

• Function application. Given a function that takes in a real number and returns a real number 
(such as square root or cosine), we can define the application of the function to a matrix as the 
matrix whose elements are the result of applying the function to each element in the original mat-
rix.  Write a function Apply that takes in a Matrix and a function, then returns a Matrix whose 
elements are equal to the elements of the input Matrix with the specified function applied.  You 
may find the Function class from the Chapter 30 of the course reader helpful.

• Forcing evaluation.  Provide a means for clients of Matrix to force evaluation of the Matrix 
into  a  ConcreteMatrix using  techniques  similar  to  what  you've  already developed for  the 
setAt case.

• Compound assignment operators.  The compound assignment operators are operators like  += 
and *= that apply an operator to two values and store the result back into one of the values.  The 
current implementation of Matrix supports operator+ etc. without the matching compound as-
signment operators.  Add these extra operators to the Matrix class.

• Relational operators.  Currently, we cannot store Matrix objects in an STL set or as keys in 
an STL map because we have not implemented the < operator or any of the other relational oper-
ators.   Implement the six relational operators on  Matrix,  minimizing the number of element 
lookups (i.e. computations) that you need to perform.

• Parameterized matrix types.  We chose to represent the Matrix as a matrix of doubles, but it 
is meaningful to create matrices of other types as well (floats or complex<double>s, for ex-
ample).  Parameterize the Matrix class over the type of elements that will be stored in it.

• Value caching. Every time we query a Matrix for the value of an element at a position, the ele-
ment is recomputed using the expression tree.  It would be useful to have a means for efficiently 
caching and looking up values that have already been computed.  See if you can find a way to 
have the  Matrix cache its values up to some point, and then fully evaluate the matrix when it 
looks like the user will be looking up a “large number” of values (for some definition of “large 
number”).
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• Unified getAt/setAt syntax. The grid class from the course reader uses operator overloading 
to allow clients to select elements out of the grid using the syntax myGrid[row][col].  See if 
you  can implement  this  functionality for  the  Matrix.  If  you  want  to really flex your  C++ 
muscles, you can try having the bracket syntax return a proxy object that detects whether the 
Matrix element is being read or written, which can be used to avoid deep-copying matrix ele-
ments unnecessarily.  Send me an email or come talk to me after lecture and I can provide a de-
scription of this technique.

• Compile-time dimensional analysis.  When working with the Matrix class, it is possible to add 
or subtract matrices whose dimensions do not agree; this produces undefined behavior at runtime. 
In general, we cannot detect all possible dimension mismatches without actually running the pro-
gram, but in the special case where the matrix dimensions are known at compile-time it is pos-
sible to encode information about the matrix dimensions into the type system.  For example, a 
3 x 5 matrix might be a Matrix<3, 5>, while a 10 x 10 matrix would be a Matrix<10, 10>. 
Using techniques like those described in Chapter 24 of the course reader, modify the  Matrix 
class so that it is illegal to add or subtract matrices whose dimensions don't agree.

• Expression tree optimization.  Consider the following expression tree:

X+

a
Y

-

+
-

 
This monstrosity is completely equivalent to the much simpler tree
 

xa

 
The expression trees generated by the  Matrix class are not subject to any sort of optimization 
and it is possible to end up with very complex expressions that simplify down to much more com-
pact (and therefore efficient) operations.  For a challenge that will make you feel like you are 
ready for anything, see if you can implement an algorithm that simplifies the expression trees 
generated by the Matrix class.  If you end up with a working implementation, I would love to 
show it off to future CS106L classes.
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Hints and Advice

This assignment is not as difficult as it may appear.  Although this handout is fairly lengthy, the key con-
cepts can be expressed succinctly and elegantly in C++.  My implementation of the assignment runs under 
300 lines, including comments and several of the extensions described above.  That said, there are some 
points to be aware of when implementing Matrix.  Here are some tips and tricks on how to avoid com-
mon pitfalls:

• Make sure that you understand what code has already been written for you.  There is a lot of 
starter code that should make it easier to implement the trickier parts of the assignment.  Before 
writing any code, take some time to read over what functions are available to you.  In particular, 
make  sure  that  you  check  out  SharedPtr,  particularly  dynamic_pointer_cast and 
static_pointer_cast.

• Make sure that your code consistently uses  SharedPtr when working with  MatrixExprs.  If 
you use raw pointers in some places and SharedPtrs in others, you are likely to have incorrect 
reference counts on your MatrixExpr instances and will probably experience particularly nasty 
runtime errors.  You should be able to implement this assignment without ever using a raw Mat-
rixExpr*.

• Be as lazy as possible.  With the exception of setAt, none of the functions that you write for this 
assignment should require you to eagerly evaluate any matrices.  As much as possible, try to im-
plement the matrix operations using expression trees of  MatrixExpr rather than  for-looping 
over MatrixExprs and calling the getAt function.  The provided test code contains several tests 
that will run for inordinately long periods of time unless you're lazily evaluating your matrices, 
which should help diagnose any cases where you're being too eager.  And no, this tip doesn't 
mean that you should wait to the last minute to start the assignment. ☺

• Test your code thoroughly!  You are provided a test suite that can help smoke out latent errors in 
your code.  Once you've completed a task, make sure to test it extensively before moving on to 
the next section.  Otherwise, you risk errors in one part of the code masquerading as errors in an-
other.

• Don't hesitate to ask questions!  The point of this assignment is to give you a chance to play 
around with C++ and build cool software, not to punish you for not understanding a partic-
ular aspect of the language.  If you're having trouble understanding the starter code, run into in-
explicable runtime errors, or can't seem to get some part of the assignment working, please send 
me an email or talk to me after lecture.  I genuinely love this material and want to help you learn 
it, so don't hesitate to ask questions if you need to.

Deliverables

Once you've completed the above tasks, please submit the following:

• Any source files you modified to implement the  Matrix class or your extensions.  You don't 
need to submit starter files that you didn't modify.

• A test program that showcases at least one of the extensions you implemented.  For example, if 
you implemented lazy matrix multiplication, this program might create two matrices, take their 
product, and print a single element from the result.

Once you've completed the assignment, email the above files to  htiek@cs.stanford.edu.  Please include 
your name and SUNetID on top of all of your files.  Then pat yourself on the back – you've just com-
pleted the last assignment for CS106L and are now a veteran C++ programmer!
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