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Introduction

Functors (also called function objects or functionoids) are a strange but incredibly useful feature of the 
C++ language that are essentially “smart functions.”  While initially functors can be a bit confusing, with 
practice you will come to appreciate their immense power, flexibility, and versatility.  This handout 
serves as an introduction to functors in preparation for Handout #21 on functional programming with the 
STL.

A Simple Problem

To understand the motivation behind functors, let's consider a simple task and how we might try to solve 
it using the STL algorithms.  Let's suppose you have a vector<string> containing random strings and 
you'd like to count the number of elements in the vector that have length less than five.  You stumble 
upon the count_if STL algorithm, which accepts a range of iterators and a predicate function and 
returns the number of elements in the iterator range for which the function returns true.  Since we want to 
count the number of strings with length less than five, we could then write a function like this one:

bool LengthIsLessThanFive(const string &str)
{
    return str.length() < 5;
}

And then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanFive) to 
get the number of short elements.  Similarly, if you wanted to count the number of strings with length less 
than ten, you could write a LengthIsLessThanTen function, and so on and so forth.  While this 
approach will work in some cases, it is critically hampered because the maximum length must be 
determined at compile-time.  For example, suppose you want to write a program that prompts the user for 
a number and then returns the number of strings in the vector with fewer than that many characters. 
Since the user could enter any integer value, you cannot use the above approach, since we couldn't 
determine at compile-time which value to compare the string's length against.

To solve this problem, you might consider writing a function like this:

bool LengthIsLessThan(const string &str, int length)
{
    return str.length() < length;
}

While this is indeed far more generic than the above approach, it won't work in conjunction with 
count_if since count_if requires a unary function (a function taking only one argument) as a 
parameter.  Somehow we need to build a unary function that stores the value to compare against the string 
length.  While we can do this with global variables, that approach is horrendously unsightly and can lead 
to all sorts of other problems (especially if two different functions each need to modify the global 
variable).  Instead, we'll use a functor.



At a high level, a functor is an object that acts like a function.  For example, suppose we create a functor 
class called MyClass that imitates a function accepting an int parameter and returning a double.  Then 
the following code would be legal:

MyClass myFunctor;
cout << myFunctor(137) << endl; // "Call" myFunctor with parameter 137

Just like a regular function, here we can “call” the myFunctor object with whatever parameter we want.

To create a functor, you create an object that overloads the parentheses operator, operator ().  Unlike 
other operators we've seen so far, when overloading the parentheses operator, you're free to return an 
object of any type (or even void) and can accept any number of parameters.  For example, here's a 
sample functor that overloads the parentheses operator to print out a string:

struct MyFunctor
{
    void operator() (const string &str) const
    {
        cout << str << endl;
    }
};

Note that there are two sets of parentheses there.  The first group is for the function name – 
operator () –  and the second for the parameters to operator ().  Also, note that we're using a 
struct instead of a class.  C++ makes no distinction between structs and classes other than the 
default visibility, and to conserve space most C++ programmers make their functors structs instead of 
classes.  To use this functor, we can write:

MyFunctor functor;
functor("Functor power!");

Which prints out “Functor power!”

In the above example, our functor acted just like a regular function (and indeed, we could have 
completely replaced the functor with a C++ function).  However, functors are immensely powerful 
because unlike regular C++ functions, they can store and retrieve information beyond that provided by 
their parameters.  For example, consider the following functor class:

struct StringAppender
{
    /* Constructor takes and stores a string. */
    explicit StringAppender(const string &str) : toAppend(str) {}

    /* operator() prints out a string, plus the stored suffix. */
    bool operator() (const string &str) const
    {
        cout << str << ' ' << toAppend << endl;
    }
    const string toAppend;
};

This object represents a functor whose constructor takes in a string and whose operator () function 
prints out a string parameter, followed by the stored string.  We use the StringAppender functor like 



this:

StringAppender myFunctor("is awesome");
myFunctor("C++");

This code will print out “C++ is awesome,” since we passed in “C++” as a parameter and the functor 
appended its stored string “is awesome.”  Basically, we've written something that looks like a single-
parameter function but that has access to extra information.  This is the critical difference between a 
function and a functor – while a function cannot access any information beyond its parameters, a functor 
has access to both its parameters and all of its data members.

Let's return to the above example with count_if.  Somehow we need to provide a unary function that 
can return whether a string is less than an arbitrary length.  To solve this problem, instead of writing a 
unary function, we'll create a unary functor whose constructor stores the maximum length and whose 
operator () accepts a string and returns whether it's of the correct length.  Here's one possible 
implementation:

struct ShorterThan
{
    /* Accept and store an int parameter */
    explicit ShorterThan(int maxLength) : length(maxLength) {}

    /* Return whether the string length is less than the stored int. */
    bool operator() (const string &str) const
    {
        return str.length() < length;
    }
    const int length;
};

Note that while operator () takes in only a single parameter, it has access to the length field that was 
set up by the constructor.  This is exactly what we want – a unary function that somehow knows what 
value to compare the parameter to.  To tie everything together, here's the code we'd use to count the 
number of strings in the vector that are shorter than the specified value:

ShorterThan st(length);
count_if(myVector.begin(), myVector.end(), st);

Functors are absolutely incredible when combined with STL algorithms for this very reason – they look 
and act like regular functions but have access to extra information.  This is just your first taste of functors, 
and there are some absolutely incredible things you can do with functors that have significant 
implications for the way you program using the STL, as detailed in the next handout.

Creating Temporary Objects

When working with functors, you'll commonly want to create a temporary class instance that exists only 
in the context of a function call.  While right now you might be a bit confused about exactly why you'd 
ever want to do this, it should become clearer shortly.

In C++, you are allowed to create temporary objects for the duration of a single line of code by explicitly 
calling the object's constructor.  For example, the following code creates a temporary vector<int> and 
prints out its size:



cout << vector<int>().size() << endl;

Let's analyze exactly what's going on here.  The code vector<int>() creates a temporary 
vector<int> object by calling the vector<int> constructor with no parameters.  Therefore, the 
newly-created vector has no elements.  We then call the temporary vector<int>'s size member 
function, which will return zero since the vector is empty.  Once this line finishes executing, the 
vector's destructor will invoke, cleaning up the new object.

While the above example is admittedly quite useless, it is important to know that it's legal to construct 
objects “on the fly” using this syntax because it frequently arises in professional code.  Look back to the 
above code with count_if.  If you'll notice, we're creating a new ShorterThan class using the 
parameter length, then feeding the object to count_if.  After that line, odds are that we'll never use the 
ShorterThan object again.  This is an excellent spot to use temporary objects, since we need a new 
ShorterThan for the function call but don't plan on using it afterwards.  Thus, we can convert this code:

ShorterThan st(length)
count_if(myVector.begin(), myVector.end(), st);

Into this code:

count_if(myVector.begin(), myVector.end(), ShorterThan(length));

Here ShorterThan(length) constructs a temporary ShorterThan functor with parameter length, 
then passes it to the count_if algorithm.  Don't get tripped up by the syntax – ShorterThan(length) 
does not call the ShorterThan's operator () function.  Instead, it invokes the ShorterThan 
constructor with the parameter length to create a temporary object.

Storing Objects in STL maps, Part II

In the previous handout, we demonstrated how to store custom objects as keys in an STL map by 
overloading the < operator.  However, what if you want to store elements in a map or set, but not using 
the default comparison operator?  For example, consider a set<char *> of C strings.  Normally, the < 
operator will compare two char *s by seeing if one references memory with a lower address than the 
other.  This isn't at all the behavior we want.  First, it would mean that the set would store its elements in 
a seemingly random order since the comparison is independent of the contents of the C strings.  Second, 
if we tried to call find or count to determine membership in the set, since the set compares the 
pointers to the C strings, not the C strings themselves, find and count would return whether the given 
pointer, not the pointee, was contained in the set.

We need to tell the set that it should not use the < operator to compare C strings, but we can't simply 
provide an alternative < operator and expect the set to use it.  Instead, we'll define a functor class whose 
operator () compares two C strings lexicographically and returns whether one string compares less 
than the other.  Here's one possible implementation:

struct CStringCompare
{
    bool operator() (const char *one, const char *two) const
    {
        return strcmp(one, two) < 0; // Use strcmp to do the comparison
    }
};



Then, to signal to the set that it should store elements using CStringCompare instead of the default < 
operator, we'll define the set as a set<char *, CStringCompare>.  Note that we specify the 
comparison functor class as a template argument to the set.  This means that set<char *> and 
set<char *, CStringCompare> are two different types, so you can only iterate over a 
set<char *, CStringCompare> with a set<char *, CStringCompare>::iterator.  typedef 
will be your ally here.  You can use a similar trick for the map by declaring a 
map<KeyType, ElemType, CompareType>.

Writing Functor-Compatible Code

In CS106X, you've seen how to write code that accepts a function pointer as a parameter.  For example, 
consider the following code, which accepts a function that takes and returns a double, then prints a table 
of some sample values of the function:

void TabulateFunctionValues(double (function)(double))
{
    for(double i = LOWER_BOUND; i <= UPPER_BOUND; i += STEP)
        cout << "f(" << i << ") = " << function(i) << endl;
}

Assume that we have some unary functor MyFunctor that accepts and returns a double and that we 
want to pass this functor into TabulateFunctionValues.  Unfortunately, as it is currently written, 
TabulateFunctionValues cannot accept a MyFunctor object as a parameter, since its parameter is 
defined as double (function)(double) and not MyFunctor function.  To solve this problem, 
redefine TabulateFunctionValues as a template function that accepts as a parameter an object of 
some template type UnaryFunction, as shown here:

template<typename UnaryFunction>
void TabulateFunctionValues(UnaryFunction function)
{
    for(double i = LOWER_BOUND; i <= UPPER_BOUND; i += STEP)
        cout << "f(" << i << ") = " << function(i) << endl;
}

Now, we can pass both functions and function pointers into TabulateFunctionValues, since for any 
type we pass in we will get a newly-created template instantiation that accepts a parameter of that type.

If you'll notice, the above code is templatized over some type called UnaryFunction.  Like any other 
template function or template class, this means that we are allowed to pass an object of any type we'd like 
to TabulateFunctionValues.  Does this pose a problem if we try to pass in an int or string that 
isn't a functor or function?  The answer is no.  Although UnaryFunction can be an object of any type, if 
we provide as an argument a value that cannot be called as a function, we will get a compile-time error. 
In C++ jargon, this is known as an implicit interface.  There are no formal restrictions on what sorts of 
objects we can provide as arguments to TabulateFunctionValues, but only those types that can be 
called as a unary function accepting a double will result in legal code.  Implicit interfaces are an 
advanced topic in C++, so if you're interested, consult a reference for more information.



Practice Problems

1. All overloaded operators except for operator () only allow you to specify a fixed number of 
parameters.  What about operator () makes this rule not hold?

2. The CS106X Grid class allows you to access individual elements using the syntax 
myGrid(x, y).  How is this functionality implemented?  Given what you know about functors, 
do you consider this an appropriate use of the parentheses operator?

3. The STL algorithm for_each accepts as parameters a range of iterators and a unary function, 
then calls the function on each argument.  Unusually, the return value of for_each is the unary 
function passed in as a parameter.  Why might this be?

4. Using the fact that for_each returns the unary function passed as a parameter, write a function 
MyAccumulate that accepts as parameters a range of vector<int>::iterators and an initial 
value, then returns the sum of all of the values in the range, starting at the specified value.  Do not 
use any loops – instead, use for_each and a custom functor class that performs the addition.

5. Write a function AdvancedBiasedSort that accepts as parameters a vector<string> by 
reference and a string “winner” parameter, then sorts the vector, except that all strings equal 
to the winner string are at the front of the vector.  Do not use any loops. (Hint: Use the STL 
sort algorithm and functor that stores the “winner” parameter.)

6. The STL generate_n algorithm is defined as void generate_n(OutputIterator start, 
size_t count, NullaryFunction fn) and calls the zero-parameter function fn count 
times, storing the output in the range beginning at start.  Write a function FillAscending 
that accepts two parameters, an empty vector<int> by reference and an int called n and fills 
the vector with the integers in the range [0, n).  Do not use any loops.

7. Write a function VectorToMap that accepts a vector<string> and an integer value and 
returns a map<string, int> whose keys are equal to the strings in the vector and whose values 
are equal to the int parameter.  Do not use any loops. (Hint: Use transform and a callback 
functor.  Remember that maps store elements as pair<const KeyType, ValueType>s)


