
CS106L
Fall 2008

Handout #02
September 24, 2008

C++ Without genlib.h

When you arrived at your first CS106X lecture, you probably learned to write a simple “Hello, World”
program like this one shown below:

#include "genlib.h"
#include <iostream>

int main()
{

cout << "Hello, world!" << endl;
return 0;

}

Whether or not you have previous experience with C++, you probably realized that the first line means
that the source code references an external file called genlib.h. For the purposes of CS106X, this is
entirely acceptable (in fact, it's required!), but once you migrate from the educational setting to
professional code you might run into trouble because genlib.h is not a standard header file. It's part of the
CS106 libraries in order to simplify out certain language features so you can focus on writing code, rather
than appeasing the compiler.

In CS106L, none of our programs will use genlib.h, simpio.h, or any of the other CS106 library files.
Don't worry, though, because none of the functions exported by these files are “magical.” In fact, over
the course of CS106L you will learn how to rewrite or supersede the functions and classes exported by
the CS106 libraries.* If you have the time, I encourage you to actually open up the genlib.h file and peek
around at its contents.

To write “Hello, World” without genlib.h, you'll need to add another line to your program. The “pure”
C++ version of “Hello, World” thus looks something like this:

#include <iostream>
using namespace std;

int main()
{

cout << "Hello, World!" << endl;
return 0;

}

The only major difference is that the header file genlib.h has been replaced by the somewhat cryptic
statement “using namespace std;” Before explaining exactly what this statement does, we need to
take a quick diversion to lessons learned from development history.

* The exceptions are the graphics and sound libraries. C++ does not have natural language support for
multimedia, and although many such libraries exist, we won't cover them in this class.

Let's suppose you're working at a company that produces two types of software: graphics design
programs and online gunfighter duels (admittedly, this combination is pretty unlikely, but humor me for a
while). Each project has its own source code files complete with a set of useful helper functions and
classes. Here are some sample header files from each project, with most of the commenting removed:

GraphicsUtility.h:
/* File: graphicsutility.h
 * Graphics utility functions.
 */

/* ClearScene: Clears the current scene. */
void ClearScene();

/* AddLine: Adds a line to the current scene. */
void AddLine(int x0, int y0, int x1, int y1);

/* Draw: Draws the current scene. */
void Draw();

GunfighterUtility.h:
/* File: gunfighterutility.h
 * Gunfighter utility functions.
 */

/* MarchTenPaces: Marches ten paces, animating each step. */
void MarchTenPaces(PlayerObject &toMove);

/* FaceFoe: Turns to face the opponent. */
void FaceFoe();

/* Draw: Unholsters and aims the pistol. */
void Draw();

Now, suppose that the gunfighter team is implementing MarchTenPaces and needs to animate the
gunfighters walking away from one another. Realizing that the graphics team has already made a whole
set of library functions for graphics, the gunfighter programmers import graphicsutility.h into their
project, write code using the graphics functions, and try to compile. However, when they try to test their
code, the compiler spits out errors, which might look something like “error: function 'void
Draw()' already defined.”

The problem exists because both the graphics and the gunfighter modules contain functions named
Draw() with the same parameters and the compiler can't distinguish between them. Unfortunately, it's
impractical for either team to rename their Draw function, both because the other programming teams
expect them to provide functions named Draw and because their code is already filled with calls to Draw.
Fortunately, there's an elegant solution to this whole problem.

Enter the C++ namespace keyword. A namespace adds another layer of naming onto your functions and
variables. For example, if all of the gunfighter code was in the namespace “Gunfighter,” the function
Draw would have the full name Gunfighter::Draw. Similarly, if the graphics programmers put their
code inside namespace “Graphics,” they would reference the function Draw as Graphics::Draw. If this
is the case, there won't be any ambiguity between the two functions, and the gunfighter development team
would be able to compile their code normally.

But there's still one problem – other programming teams are expected to call functions named
ClearScene and FaceFoe, not Graphics::ClearScene and Gunfighter::FaceFoe. Fortunately,
C++ allows what's known as a using declaration that lets you ignore fully-qualified names from a
namespace and instead use the shorter names.

Back to the Hello, World example (reprinted here)

#include <iostream>
using namespace std;

int main()
{

cout << "Hello, World!" << endl;
return 0;

}

The statement “using namespace std;” that follows the #include directive tells the compiler that in
your program, all of the functions and classes in the namespace “std” can be used without their fully-
qualified names. This “std” namespace is the C++ standard namespace that includes all of the library
functions and classes of the C++ Standard Library. For example, cout is truly named std::cout, and
without the using declaration importing the std namespace, Hello, World would look something like this:

#include <iostream>

int main()
{

std::cout << "Hello, World!" << std::endl;
return 0;

}

While some programmers prefer to use the fully-qualified names whenever using standard library
components, it's clear that writing std:: can get to be a bit of a hassle. To eliminate this problem, in
genlib.h, we included the using declaration for you. But now that we've taken the training wheels off and
genlib.h is no more, you'll have to remember to include it yourself!

There's one more part of genlib.h that's important to note, and that's the use of the string type. Unlike
other programming languages, in C++ there is no primitive string type. Sure, there's the class string,
but unlike an int or a double, it's not a built-in type and thus must be included with a #include
directive. Specifically, you'll need to write #include <string> at the top of any program that wants to
use C++-style strings. And don't forget the using declaration, or you'll need to write std::string every
time you want to use C++ strings!

