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Introduction

Over the past ten weeks we've explored many aspects of C++, ranging from simple use of the IOStream 
library to advanced operator overloading and functional programming with the STL.  Even so, we have 
hardly taken our first steps into the wondrous world of C++.  There are numerous advanced programming 
techniques and language features we did not have time to cover in this class.  This handout covers two of 
these important C++ topics – exception handling and object memory management.

A Simple Problem

Up to this point, all of the programs you've written have proceeded in a linear fashion – they begin inside 
a special function called main, then proceed through a chain of function calls and returns until (hopefully) 
ultimately returning.  While this is perfectly acceptable, it rests on the fact that each function, given its 
parameters, can perform a meaningful task and return a meaningful value.  However, in some cases this 
simply isn't possible.  Consider, for example, this function:

string ConcatNCopies(const string &input, int numRepeats)
{
    string result;
    for(int i = 0; i < numRepeats; i++)
        result += input;
    return result;
}

At first glance, this function seems totally normal, and in almost all cases it will perform its stated task. 
However, there's a slight problem – what if numRepeats is negative?  In the current implementation, 
since the inner loop will never execute,  ConcatNCopies will simply return the empty string.  While this 
won't crash at runtime, it is nonetheless a problem because it is a silent error.  The function didn't work 
correctly, but the calling function has no way of knowing this.

There are several questions we have to ask ourselves at this point.  First, is this even a problem?  The 
answer should almost certainly be yes.  If we write code that can fail without signaling that an error 
occurred, then the program could enter an invalid and potentially unstable state without knowing the 
cause.  A truly robust piece of software should be able to detect and handle problems so that it can 
respond before they snowball into fully-fledged runtime errors.  This then leads into the second question: 
how should we address the problem?  Here, we have several options, many of which unfortunately 
introduce complications of their own.  The first option, and the one you've encountered up to this point in 
CS106, is to call a function akin to the CS106 Error to report the error and terminate the problem. 
While this will indeed give the user notification of the problem, it is not particularly elegant.  After all, a 
call to Error abruptly exits without giving the rest of the program or the user a chance to respond.  And, 
in the case of functions like ConcatNCopies, it seems drastic to completely stop execution simply 
because of a bad parameter.  Rather, we'd hope that somehow the calling function could identify the 
problem, correct it, then continue execution.



This approach suggests a second option, one common in pure C – sentinel values.  The idea is to have 
functions return special values indicating “this value is invalid because the function failed to execute 
correctly.”  Initially, this may seem like a good idea – it reports the error and gives the calling function a 
change to respond.  However, there are several major problems with this approach.  First, it means that 
we have to designate a special return value that the function must never return except when an error 
occurs.  In the case of string, this is infeasible since if we mark some string value as an error (let's 
call it INVALID_PARAM), then the user could write code like this:

ConcatNCopies(INVALID_PARAM, 1);

And the code would return INVALID_PARAM (since concatenating INVALID_PARAM with itself one time 
yields INVALID_PARAM) even though the function succeeded.  Second, unless we define a standardized 
system for reserving invalid return values, we may end up with a huge number of functions, each with 
their own special “error” return codes, that could lead to problems if we checked the function's return 
value against the wrong sentinel.  Imagine the chaos of constants STRING_ERROR, INVALID_STRING, 
and INVALID_PARAM, each corresponding to different functions.  Third, this approach makes the code 
bulky, since whenever we'd call ConcatNCopies, we'd have to write something like this:

string result = ConcatNCopies(myString, myInteger);
if(result == INVALID_PARAM) { /* ... handle error ... */ }

This is unsightly and, above all, needlessly complicates the code.

Yet another option might be to change the function declaration so that it looks like this:

bool ConcatNCopies(const string &input, int numRepeats, string &output);

Instead of returning a value, instead we fill in a string specified as a reference parameter and then 
return whether the operation succeeded.  This too has its flaws.  Suppose our function is an overloaded 
operator.  We cannot simply change the number of parameters to an overloaded operator, since all 
overloaded operators except for operator () have a fixed number of arguments, and consequently this 
approach will not work.  All of the approaches we've tried so far have some flaw, so how are we to 
resolve this problem?

Exception Handling

The reason the above example is such a problem is that the normal C++ function-call-and-return system 
simply isn't robust enough to communicate errors back to the calling function.  To resolve this problem, 
C++ provides language support for an error messaging system called exception handling that completely 
bypasses function-call-and-return.  If an error occurs inside a function, rather than returning a value, you 
can report the problem (called an exception) to the exception handling system to automatically jump to 
the proper error-handling code.

The C++ exception handling system is broken into three parts – try blocks, catch blocks, and throw 
statements.  try blocks are simply regions of code where you inform the C++ compiler that a runtime 
exception might occur.  To declare a try block, you simply write the keyword try, then surround the 
appropriate code in curly braces.  For example, the following code shows off a try block:



try
{
    cout << "I'm in a try block!" << endl;
}

Inside of a try block, code executes as normal and jumps to the code directly following the try block 
once finished.  However, at some point inside a try block your program might run into a situation from 
which it cannot normally recover – for example, a call to ConcatNCopies with a negative argument.  To 
report an error, use the throw keyword to “throw” the exception into the nearest matching “catch” clause. 
Like return, throw accepts a single parameter that indicates an object to throw so that when handling 
the exception your code has access to extra information about the error.  Unlike other languages like Java, 
in C++ you're allowed to throw objects of any type as exceptions, not just specialized classes.  Thus all of 
the following pieces of code are legal:

throw 0;
throw new vector<double>;
throw 3.14159;

When you throw an exception, it can be caught by a catch clause specialized to catch that error.  catch 
clauses are defined like this:

catch(ParameterType param)
{
    /* Error-handling code */
}

catch blocks must directly follow try blocks, and it's illegal to declare one without the other.  Since 
catch clauses are specialized for a single type, it's legal (and recommended) to have cascading catch 
clauses, each designed to pick up a different type of exception.  For example, here's code that catches 
exceptions of type int, vector<int>, and string:

try
{
}
catch(int myInt)
{
}
catch(vector<int> &myVector)
{
}
catch(string &myString)
{
}

Now, if the code inside the try block throws an exception, control will pass to the correct catch block. 
When defining cascading catch blocks as shown here, they will be evaluated in the order they're 
declared.  Thus if you have two different catch(int) blocks, only the first will execute when catching 
an exception.  You can also define a special “catch-all” catch clause that catches any type of exception by 
writing catch(...).  This catch clause will catch any exception, but because you cannot determine what 
type of exception it caught, you will not have access to the object that was thrown.

Let's return to our earlier example with ConcatNCopies.  We want to signal an error in case the user 
enters an invalid parameter, and to do so we'd like to use exception handling.  The question, though, is 



what type of object we should throw.  While we can choose whatever type of object we'd like, C++ 
provides a header file, <stdexcept>, that defines several classes useful as thrown objects that let us 
specify what error triggered the exception.*  One of these, invalid_argument, is ideal for the situation. 
invalid_argument accepts in its constructor a string parameter containing a message representing 
what type of error occurred, and has a member function called what that returns what the error was.  We 
can thus rewrite the code for ConcatNCopies as

string ConcatNCopies(const string &input, int numCopies)
{
    if(numCopies < 0)
        throw invalid_argument("Number of copies must be positive.");

    string result;
    for(int i = 0; i < numRepeats; i++)
        result += input;
    return result;
}

Notice that while the function itself does not contain a try/catch system, it nonetheless has a throw 
statement.  If this statement is executed, then C++ will step backwards through all calling functions until 
it finds an appropriate catch statement.  If it doesn't find one, then the program will halt with a runtime 
error.  Now, we can write code using ConcatNCopies that looks like this:

try
{
    cout << ConcatNCopies(myString, myInteger) << endl;
}
catch(invalid_argument &problem)
{
    cout << problem.what() << endl; // Prints out the error message.
}

A Word on Efficiency

Exception handling should be used only for exceptional circumstances – errors out of the ordinary that 
necessitate a major change in the flow of control.  While you can use exception handling as a fancy form 
of function call and return, it is highly suggested that you avoid doing so.  Throwing an exception is 
much, much slower than returning a value because of the extra bookkeeping required, so be sure that 
you're only using the exception handling system for serious program errors.

Programming with Exception Handling

While exception handling is a robust and elegant system, it has several sweeping implications for your 
C++ code.  Most notably, when using exception handling, you must treat your code as though it might 
throw an exception at any point.  In other words, you can never assume that an entire code block will be 
completed on its own, and should be prepared to handle cases where control breaks out of your functions 
at inopportune times.

For example, consider the following assignment operator code for a Derived object inheriting from 
Base:

* The <stdexcept> header exports a hierarchy of exceptions that encompass a wide number of error types.  Be 
sure to read into them if you pursue this material in-depth.



Derived& Derived::operator = (const Derived &other)
{
    if(this != &other)
    {
        clear();
        Base::operator =(other);
        copyOther(other);
    }
    return *this;
}

Normally, this code should work without problems, but when you add exception handling to the mix this 
code is incredibly dangerous.  Since the code may throw an exception at any point, there's no way of 
knowing that the entire body of the if statement will execute.  In fact, a perfectly valid run of this code 
might be for the clear command to execute but have the Base::operator = function throw an 
exception.  In this case, we have a serious problem, since we've cleared out the object without replacing it 
with any meaningful data.  As a result, later in our program, if we try to use the malformed object, we'll 
probably get runtime errors.  Clearly, this is a problem.*

If we maintain the mentality that any piece of code can throw an exception at any point, it would be 
virtually impossible to write exception-safe code.  However, it's much easier if we could somehow make 
assumptions about what sorts of functions will and will not throw exceptions.  C++ professionals tend to 
categorize C++ code into three classes based on their relative safety when mixed with exceptions: basic 
exception-safe code, strong exception-safe code, and nothrow exception-safe code.  Basic exception-safe  
code is code that is minimally exception-safe, meaning that if an exception aborts it midway through 
execution, the object is not corrupted.  Note that this does not mean that the object is in its original state, 
only that it's not corrupted.  Strong exception-safe code promises that any exceptions at runtime will leave 
the program state unchanged.  That is, any data existing before the function call will remain that way even 
if function flow aborts midway.  Finally, nothrow exception-safe code is code that guarantees it will not 
throw any exceptions and that if it does, it is a serious error that should shut down the program 
immediately.

Writing code that meets even the weakest of these guarantees can be incredibly difficult, and indeed 
writing exception-safe code is one of the most challenging aspects of professional C++.  We've ignored 
exception handling in both CS106X and CS106L for this very reason – it greatly complicates even the 
simplest of tasks.  Nonetheless, exception handling is incredibly useful and is deeply embedded into C++. 
To learn more about writing exception-safe code, you should be sure to consult a reference.

Object Memory Management and RAII

C++'s memory model is best described as “dangerously efficient.”  Unlike other languages like Java, C++ 
does not have a “garbage collector” and consequently you must manually allocate and deallocate 
memory.  At first, this might seem like a simple task – just delete anything you allocate with new, and 
make sure not to delete something twice.  However, it can be quite difficult to keep track of all of the 
pointers you've allocated in a program.  After all, you probably won't notice any symptoms of memory 
leaks unless you run your programs for hours on end, and in all probably will have to use a special tool to 
check memory usage.  You can also run into trouble where two classes each have a pointer to a shared 

* In fact, it's such a serious problem that in some cases you have to radically restructure your code to make sure it's 
exception-safe.  Writing exception-safe assignment operators is one such challenge, and one of the only valid 
ways to make an exception-safe assignment operator is to switch to another strategy called “copy-and-swap” to 
perform the assignment.  Consult a reference for more information on copy-and-swap.



object.  If one of the classes isn't careful and accidentally deletes the memory while the other one is still 
accessing it, you can get some particularly nasty runtime errors where seemingly valid data has been 
corrupted.  The situation gets all the more complicated when you introduce exception-handling into the 
mix, where the code to delete allocated memory might not be reached because of a runtime exception 
sometime earlier in the code.

In some cases having a high degree of control over memory management can be quite a boon to your 
programming, but most of the time it's simply a hassle.  What if we could somehow get C++ to manage 
our memory for us?  While building a fully-functional garbage collection system in C++ would be just 
short of impossible, using only basic C++ concepts it's possible to construct an excellent approximation of 
automatic memory management.  The trick is to build smart pointers, objects whose constructors acquire 
a resource allocated by new and whose destructors clean up that resource through a call to delete.  That 
is, when the objects are constructed, they wrap a newly-allocated pointer inside an object shell that cleans 
up the mess when the object goes out of scope.  Combined with features like operator overloading, it's 
possible to create slick smart pointers that look almost exactly like true C++ pointers, but that know when 
to free unused memory.

The C++ Standard Library exports the auto_ptr type, a smart pointer that accepts in its constructor a 
pointer to dynamically-allocated memory and whose constructor calls delete on the resource.* 
auto_ptr is a template class whose template parameter indicates what type of object the auto_ptr will 
“point” at.  For example, an auto_ptr<string> is a smart pointer that points to a string.  Be careful 
– if you write auto_ptr<string *>, you'll end up with an auto_ptr that points to a string *, 
which is similar to a string **.  Through the magic of operator overloading, you can use the regular 
dereference and arrow operators on an auto_ptr as though it were a regular pointer.  For example, here's 
some code that dynamically allocates a vector<int>, stores it in an auto_ptr, and then adds an 
element into the vector:

/* Have the auto_ptr point to a newly-allocated vector<int>.  Constructor
   is explicit, so we must use parentheses. */
auto_ptr<vector<int> > managedVector(new vector<int>);

managedVector->push_back(137); // Add 137 to the end of the vector.
(*managedVector)[0] = 42; // Set element 0 by dereferencing the pointer.

While in many aspects auto_ptr acts like a regular pointer with automatic deallocation, auto_ptr is 
fundamentally different from regular pointers in assignment and initialization.  Unlike objects you've 
encountered up to this point, assigning or initializing an auto_ptr to hold the contents of another 
destructively modifies the original auto_ptr.  Consider the following code snippet:

auto_ptr<int> one(new int);
auto_ptr<int> two;
two = one;

After the final line executes, two will be holding the resource originally owned by one, and one will be 
empty.  During the assignment, one relinquished ownership of the resource and cleared out its state. 
Consequently, if you use one from this point forward, you'll run into trouble because it's not actually 
holding a pointer to anything.  While this is highly counterintuitive, it has several advantages.  First, it 
assures that there can be at most one auto_ptr pointing to a resource, which means that you don't have 

* Note that auto_ptr calls delete, not delete [], so you cannot store dynamically-allocated arrays in 
auto_ptr.  If you want the functionality of an array with automatic memory management, use a vector.



to worry about the contents of an auto_ptr being cleaned up out from underneath you by another 
auto_ptr to that resource.  Second, it means that it's safe to return auto_ptrs from functions without 
the resource getting cleaned up.  When returning an auto_ptr from a function, the original copy of the 
auto_ptr will transfer ownership to the new auto_ptr during return-value initialization, and the 
resource will be transferred safely.

As a consequence of the “auto_ptr assignment is transference” policy, you must be careful when 
passing an auto_ptr by value to a function.  Since the parameter will be initialized to the original object, 
it will empty the original auto_ptr.  Similarly, you should not store auto_ptrs in STL containers, 
since when the containers reallocate or balance themselves behind the scenes they might assign 
auto_ptrs around in a way that will trigger the object destructors.

For reference, here's a list of the member functions of the auto_ptr template class:

auto_ptr (Type *resource) auto_ptr<int> ptr(new int);

Constructs a new auto_ptr wrapping the specified pointer, which must be 
from dynamically-allocated memory.

auto_ptr(auto_ptr &other) auto_ptr<int> one(new int);
auto_ptr<int> two = one;

Constructs a new auto_ptr that acquires resource ownership from the 
auto_ptr used in the initialization.  Afterwards, the old auto_ptr will not 
encapsulate any dynamically-allocated memory.

T& operator *() const *myAutoPtr = 137;

Dereferences the stored pointer and returns a reference to the memory it's 
pointing at.

T* operator-> () const myStringAutoPtr->append("C++!");

References member functions of the stored pointer.
T* release() int *regularPtr = myPtr.release();

Relinquishes control of the stored resource and returns it so it can be stored in 
another location.  The auto_ptr will then contain a NULL pointer and will not 
manage the memory any more.

void reset(T *ptr = NULL) myPtr.reset();
myPtr.reset(new int);

Releases any stored resources and optionally stores a new resource inside the 
auto_ptr.

An interesting trick with auto_ptr is to make a const auto_ptr to a resource.  Since the auto_ptr 
is const, it can't be assigned (which would destructively modify it) or otherwise changed, so the resource 
it wraps is guaranteed not to be transferred or deallocated until the object is cleaned up.  This trick is quite 
useful for ensuring that dynamically-allocated memory isn't cleaned up or orphaned until the end of a 
function call or object lifetime.

Of course, dynamically-allocated memory isn't the only C++ resource that can benefit from object 
memory management.  For example, if you were writing C++ code to interface with older C code that did 



file access through the old-style FILE * system, you'd need to make sure to manually set up and clean up 
the file handles.  In fact, the system of having objects manage resources through their constructors and 
destructors is commonly referred to as resource acquisition is initialization, or simply RAII.

Exceptions and Smart Pointers

Up to this point, smart pointers might seem like a curiosity, or perhaps a useful construct in a limited 
number of circumstances.  However, when you introduce exception handling to the mix, smart pointers 
will be invaluable.  In fact, in professional code where exceptions can be thrown at almost any point, 
smart pointers have all but replaced regular C++ pointers.

Consider the following function:

int EvaluateExpression(const string &expression)
{
    /* Assume ParseExpression returns dynamically-allocated memory. */
    Expression *e = ParseExpression(expression);
    int result = e->evaluate();
    delete e;
    return result;
}

Nothing in this code seems all that out-of-the-ordinary, and it seems like it won't leak any resources since 
the dynamically-allocated memory returned by ParseExpression will be cleaned up by the call to 
delete e.  Unfortunately, the above code is a veritable recipe for disaster.  After all, what happens if 
e->evaluate() throws an exception?  If so, control breaks out of the function before the call to 
delete e, and the memory will be orphaned.  To fix this problem, we can replace the regular 
Expression * pointer with an auto_ptr<Expression>.  That way, even if e->evaluate() throws 
an exception, the auto_ptr destructor will correctly clean up the dynamically-allocated memory, 
preventing a problem.  The new code thus looks like this:

int EvaluateExpression(const string &expression)
{
    auto_ptr<Expression> e(ParseExpression(expression));
    int result = e->evaluate();
    return result;
}

In general, if you ever dynamically allocate memory using new, you should strongly consider wrapping it 
in an auto_ptr, since it makes your code more exception-safe and lets you leave the deallocation to the 
auto_ptr destructor.

Exceptions in Constructors

One of the single most vexing and complicated parts of the C++ language arises when constructors throw 
exceptions.  Suppose you have the following definition of the MyClass object:



class MyClass
{
    public:
        MyClass()
        {
            throw 0; // Throw an arbitrary exception.
        }
        ~MyClass()
        {
            cout << "MyClass destructor invoked." << endl;
        }
    private:
        int myInt;
        string myString;
        vector<int> myVector;
};

What will happen if we write the following code?

try
{
    MyClass mc;
}
catch(...)
{
}

When the MyClass object is instantiated, its constructor will invoke, throwing the number zero as an 
exception and passing control to the “catch-all” handler.  However, the MyClass destructor will not 
invoke for the object mc, even though it has gone out of scope.  This is a deliberate design decision and 
requires a bit of explanation.  Suppose that if the MyClass constructor threw an exception, the MyClass 
destructor would clean up the mc object.  This would mean that the destructor for MyClass would invoke, 
but there would be no guarantee that mc had been completely initialized.  MyClass might, for example, 
contain several pointers that hadn't been initialized, and if the destructor were to delete them, you could 
very well get runtime errors inside the catch block.  Consequently, C++ will not call the destructor of a 
class for which the constructor threw an exception.  This does not mean, however, that all of mc's data 
members will not be cleaned up.  Although the MyClass object itself hasn't finished being constructed, 
its data members have been initialized to contain their default values (or possibly special values specified 
in the initializer list).  Thus C++ will invoke the destructors for all of the MyClass data members that 
have been initialized.  This is important – the data members must have been initialized for their 
destructors to invoke.  Consider the following code snippet:

MyOtherClass::MyOtherClass() : myDataMember1(one), myDataMember2(two)
{
    /* ... */
}

If in the initializer list the myDataMember1 constructor throws an exception, C++ will not call the 
destructor for any of MyOtherClass's data members, since none of them have actually been initialized 
yet.  In other words, C++ will only invoke object destructors if their constructors have completely 
finished running.



That C++ doesn't invoke destructors for incompletely-formed objects can be a great source of trouble 
when working with pointers.  For example, consider the following implementation of a 
BinaryTreeNode class:

class BinaryTreeNode
{
    public:
        BinaryTreeNode(BinaryTreeNode *left, BinaryTreeNode *right)
            : leftChild(left), rightChild(right)
        {
            /* Initialization code */
        }
        ~BinaryTreeNode()
        {
            delete leftChild;
            delete rightChild;
        }
        /* Other member functions */
    private:
        BinaryTreeNode *leftChild, *rightChild;
};

If the initialization code in BinaryTreeNode's constructor throws an exception, then C++ will not 
invoke the BinaryTreeNode destructor, but will instead call the default destructors for each of the 
children.  However, since the children are pointers, there is no default destruction code, so if leftChild 
and rightChild point to dynamically-allocated memory, the memory will simply be lost.  To resolve 
this problem, we can change leftChild and rightChild from simple pointers into smart pointers. 
That way, if the constructor throws an exception, the smart pointer destructors can clean up any leftover 
memory.  This has the added advantage that we don't have to worry about forgetting to clean up the 
resources in the destructor.  The new, exception-safe code thus looks like this:

class BinaryTreeNode
{
    public:
        BinaryTreeNode(BinaryTreeNode *left, BinaryTreeNode *right)
            : leftChild(left), rightChild(right)
        {
            /* Initialization code */
        }

/* No destructor */
    private:
        auto_ptr<BinaryTreeNode> leftChild, rightChild;
};

This is the beauty of object memory management – it makes your code cleaner, more concise, and less 
error-prone.



More to Explore

This handout has barely scratched the surface of exception handling and smart pointers, so be sure to 
consult a reference for more information.  Here are some interesting topics to explore to get you started:

1. The Boost Smart Pointers: While auto_ptr is useful in a wide variety of circumstances, in 
many aspects it is limited.  Only one auto_ptr can point to a resource at a time, and auto_ptrs 
cannot be stored inside of STL containers.  The Boost C++ libraries consequently provide a huge 
number of smart pointers, many of which employ considerably more complicated resource-
management systems than auto_ptr.  Since many of these smart pointers are likely to be 
included in the next revision of the C++ standard, you should be sure to read into them.

2. The pImpl Idiom: Writing exception-safe copy constructors and assignment operators is 
frustratingly difficult, and one solution to the problem is to use the pImpl idiom.  pImpl stands for 
“pointer to implementation,” and means that rather than having a class have actual data members, 
instead it has a smart pointer to an “implementation object” that contains all of the class data. 
pImpl also can be used to reduce compile times in large projects.  Since it arises so frequently in 
professional code, you should certainly look into pImpl if you plan on seriously pursuing C++.

3. Exception Specifications: You can explicitly mark what types of exceptions C++ functions are 
legally allowed to throw.  While this introduces a bit of overhead into your program, exception 
specifications can greatly reduce the number of bugs in your code by identifying patches of 
exception safety in an otherwise uncertain world.

4. Nothrow new: The normal C++ new operator throws a bad_alloc exception if it is unable to 
obtain the needed amount of memory.  In case this isn't what you want, you can use the nothrow 
new, a version of the new operator that cannot throw exceptions.  The syntax is 
new (nothrow) DataType.

5. assert: Functions like the CS106 Error that halt execution at runtime are somewhat inelegant 
because they don't give your program a chance to respond to an error.  However, when designing 
and testing software, Error-like functions can be useful to pinpoint the spots where errors occur 
in your code.  For this purpose, C++ inherits the C assert macro, which evaluates an expression 
and halts execution if the value is false.  However, unlike Error, when compiling the program in 
release mode, assert is disabled, so you can smoke out bugs during debug development, then 
leave error-handling in release mode to the exception-handling system.  assert is exported by 
the <cassert> header, and might be worth reading in to.

Bjarne Stroustrup (the inventor of C++) wrote an excellent introduction to exception safety, focusing 
mostly on implementations of the C++ Standard Library.  If you want to read into exception-safe code, 
you can read it online at http://www.research.att.com/~bs/3rd_safe.pdf.

Practice Problems

1. Write an AutoIntPtr class that acts a an auto_ptr for ints. (Note: while you might be 
tempted to generalize it to a template version, there are all sorts of issues to consider with 
auto_ptrs of derived and base types.  If you're interested in writing your own smart pointers,  
refer to a reference.)

2. What happens if you write a catch(...) clause before a catch(int) clause?
3. The Java programming language has support for exceptions, but unlike C++, it produces compile-

time errors if you call a function that might throw an exception without providing the proper 
catch block.  Why do you think that C++ doesn't enforce this restriction?

4. Why might throwing an exception take longer than returning a value? (Hint: think about 
constructors, and how C++ might locate an appropriate catch block)

http://www.research.att.com/~bs/3rd_safe.pdf


Final Thoughts

It's been quite a trip since we first started with the IOStream library almost three months ago.  You now 
know how to program with the STL, write well-behaved C++ objects, and even implement functional 
programming constructs inside the otherwise imperative/object-oriented C++ language.  But despite the 
immense volume of material we've covered this quarter, CS106L is only the tip of the iceberg when it 
comes to C++.  There are volumes of articles and books out there that cover all sorts of amazing tips and 
tricks when it comes to C++, and by taking the initiative and exploring what's out there you can hone your 
C++ skills until problem solving in C++ transforms from “how do I solve this problem?” to “which of 
these many options is best for solving this problem?”

C++ is an amazing and beautiful language.  It has some of the most expressive syntax of any modern 
programming language, and affords an enormous latitude in programming styles.  Of course, it has its 
flaws, as critics are eager to point out, but it is undeniable that C++ is an incredibly important and useful 
language in the modern programming age.

I hope that you've enjoyed CS106L as much as I have.  This class has been a big experiment, and I hope 
that you're satisfied with the results.  We'll be offering the class again next quarter, so you may be the first 
class in a new Stanford computer science tradition!

Have fun with C++, and by all means, if you ever have any questions, feel free to email me.

Enjoy!


